Years
>
Year 12>
Trigonometric Functions>
Integral of a Trigonometric Function>
Integral of a Trigonometric Function 1Integral of a Trigonometric Function 1
Try VividMath Premium to unlock full access
Time limit: 0
Quiz summary
0 of 4 questions completed
Questions:
- 1
- 2
- 3
- 4
Information
–
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading...
You must sign in or sign up to start the quiz.
You have to finish following quiz, to start this quiz:
Loading...
- 1
- 2
- 3
- 4
- Answered
- Review
-
Question 1 of 4
1. Question
Find the integral`int sin8x dx`Hint
Help VideoCorrect
Well Done!
Incorrect
Integrals of Trigonometric Functions
`int \text(cos)=\text(sin)``int \text(sin)=-\text(cos)``int \text(sec)^2=\text(tan)`Integrating Trigonometric Functions
$$\int f(\color{#004ec4}{g(x)}) dx=f(g(x))\cdot\frac{1}{\color{#004ec4}{g'(x)}} +c$$Substitute the components into the formula$$\int f(\color{#004ec4}{g(x)}) dx$$ `=` $$f(g(x))\cdot\frac{1}{\color{#004ec4}{g'(x)}} +c$$ $$\int \text{sin}(\color{#004ec4}{8x}) dx$$ `=` $$-\text{cos}\;8x\cdot\frac{1}{\color{#004ec4}{g'(8x)}} +c$$ Substitute known values `=` $$-\text{cos}\;8x\cdot\frac{1}{8} +c$$ Evaluate `=` $$-\frac{1}{8}\;\text{cos}\;8x +c$$ `-1/8 \text(cos) 8x+c` -
Question 2 of 4
2. Question
Find the integral`int 4sec^2 2x dx`Hint
Help VideoCorrect
Great Work!
Incorrect
Integrals of Trigonometric Functions
`int \text(cos)=\text(sin)``int \text(sin)=-\text(cos)``int \text(sec)^2=\text(tan)`Integrating Trigonometric Functions
$$\int f(\color{#004ec4}{g(x)}) dx=f(g(x))\cdot\frac{1}{\color{#004ec4}{g'(x)}} +c$$Substitute the components into the formula$$\int f(\color{#004ec4}{g(x)}) dx$$ `=` $$f(g(x))\cdot\frac{1}{\color{#004ec4}{g'(x)}} +c$$ $$\int \text{sec}^2(\color{#004ec4}{2x}) dx$$ `=` $$\text{tan}\;2x\cdot\frac{1}{\color{#004ec4}{g'(2x)}} +c$$ Substitute known values `=` $$\text{tan}\;2x\cdot\frac{1}{2} +c$$ Evaluate `=` $$2\;\text{tan}\;2x +c$$ `2 \text(tan) 2x+c` -
Question 3 of 4
3. Question
Find the integral`int sin(pi-x) dx`Hint
Help VideoCorrect
Nice Job!
Incorrect
Integrals of Trigonometric Functions
`int \text(cos)=\text(sin)``int \text(sin)=-\text(cos)``int \text(sec)^2=\text(tan)`Integrating Trigonometric Functions
$$\int f(\color{#004ec4}{g(x)}) dx=f(g(x))\cdot\frac{1}{\color{#004ec4}{g'(x)}} +c$$Substitute the components into the formula$$\int f(\color{#004ec4}{g(x)}) dx$$ `=` $$f(g(x))\cdot\frac{1}{\color{#004ec4}{g'(x)}} +c$$ $$\int \text{sin}(\color{#004ec4}{\pi-x}) dx$$ `=` $$-\text{cos}\;(\pi-x)\cdot\frac{1}{\color{#004ec4}{g'(\pi-x)}} +c$$ Substitute known values `=` $$-\text{cos}\;(\pi-x)\cdot\frac{1}{-1} +c$$ Evaluate `=` $$\text{cos}\;(\pi-x) +c$$ `\text(cos) (\pi-x)+c` -
Question 4 of 4
4. Question
Find the integral`int [sec^2 2x-cos x/2] dx`Hint
Help VideoCorrect
Correct!
Incorrect
Integrals of Trigonometric Functions
`int \text(cos)=\text(sin)``int \text(sin)=-\text(cos)``int \text(sec)^2=\text(tan)`Integrating Trigonometric Functions
$$\int f(\color{#004ec4}{g(x)}) dx=f(g(x))\cdot\frac{1}{\color{#004ec4}{g'(x)}} +c$$Substitute the components of each term into the formulaFirst term$$\int f(\color{#004ec4}{g(x)}) dx$$ `=` $$f(g(x))\cdot\frac{1}{\color{#004ec4}{g'(x)}} +c$$ $$\int \text{sec}^2\color{#004ec4}{2x}\;dx$$ `=` $$\text{tan}\;2x\cdot\frac{1}{\color{#004ec4}{g'(2x)}}$$ Substitute known values `=` $$\text{tan}\;2x\cdot\frac{1}{2}$$ Evaluate `=` $$\frac{1}{2}\text{tan}\;2x$$ Second term$$\int f(\color{#004ec4}{g(x)}) dx$$ `=` $$f(g(x))\cdot\frac{1}{\color{#004ec4}{g'(x)}} +c$$ $$\int -\text{cos}\left(\color{#004ec4}{\frac{x}{2}}\right)\;dx$$ `=` $$-\text{sin}\;\frac{x}{2}\cdot\frac{1}{\color{#004ec4}{g'(\frac{x}{2})}}$$ Substitute known values `=` $$-\text{cos}\;\frac{x}{2}\cdot2$$ Evaluate `=` $$-2\text{cos}\;\frac{x}{2}$$ Finally, combine the two terms and add the constant$$\frac{1}{2}\text{tan}\;2x-2\text{sin}\;\frac{x}{2} +c$$ `1/2 \text(tan) 2x-2 \text(sin) x/2+c`
Quizzes
- Converting Angle Measures 1
- Converting Angle Measures 2
- Converting Angle Measures 3
- Finding the Central Angle in a Circle
- Finding Areas in a Circle
- Values on the Unit Circle
- Finding Missing Angles Using the Unit Circle
- Trigonometric Ratios in the Unit Circle
- Trig Exact Values 1
- Trig Exact Values 2
- Trig Equations
- Derivative of a Trigonometric Function 1
- Derivative of a Trigonometric Function 2
- Derivative of a Trigonometric Function 3
- Applications of Differentiation
- Integral of a Trigonometric Function 1
- Integral of a Trigonometric Function 2
- Applications of Integration
- Graphing Trigonometric Functions 1
- Graphing Trigonometric Functions 2
- Graphing Trigonometric Functions 3
- Graphing Trigonometric Functions 4