Years
>
Year 12>
Trigonometric Functions>
Finding Missing Angles Using the Unit Circle>
Finding Missing Angles Using the Unit CircleFinding Missing Angles Using the Unit Circle
Try VividMath Premium to unlock full access
Time limit: 0
Quiz summary
0 of 3 questions completed
Questions:
- 1
- 2
- 3
Information
–
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading...
You must sign in or sign up to start the quiz.
You have to finish following quiz, to start this quiz:
Loading...
- 1
- 2
- 3
- Answered
- Review
-
Question 1 of 3
1. Question
Given that `0≤theta≤2pi`, solve for `theta``tan^2theta=3`Hint
Help VideoCorrect
Excellent!
Incorrect
Trigonometric Functions
$$\sin\theta=\frac{\text{opposite}}{\text{hypotenuse}}$$$$\cos\theta=\frac{\text{adjacent}}{\text{hypotenuse}}$$$$\tan\theta=\frac{\text{opposite}}{\text{adjacent}}$$First, simplify the given equation`tan^2theta` `=` `3` `sqrt(tan^2theta)` `=` `sqrt3` Get the square root of both sides `tan theta` `=` `+-sqrt3` Remember that `tan theta=(sin theta)/(cos theta)`. Knowing that `tan theta` can be either positive or negative, this means that `theta` lies on all `4` quadrantsNext, find the reference angle to work with by using special triangles`tan theta` `=` `+-sqrt3` `=` $$\frac{\text{opposite}}{\text{adjacent}}$$ `tan theta` `=` `+-sqrt3` `=` `(sqrt3)/1` Using `pi/3` as `theta` `tan theta` `=` `+-sqrt3` `=` `sqrt3` Hence, the reference angle and the value of `theta` on the First Quadrant is `pi/3`Finally, use the reference angle to find the value of `theta` on the other `3` quadrantsRemember that the reference angle is always relative to the `x`-axisSecond Quadrant:`theta` `=` `pi-pi/3` `=` `(3pi)/3-pi/3` `=` `(2pi)/3` Third Quadrant:`theta` `=` `pi+pi/3` `=` `(3pi)/3+pi/3` `=` `(4pi)/3` Fourth Quadrant:`theta` `=` `2pi-pi/3` `=` `(6pi)/3-pi/3` `=` `(5pi)/3` `theta=pi/3,(2pi)/3,(4pi)/3,(5pi)/3` -
Question 2 of 3
2. Question
Given that `0≤theta≤2pi`, solve for `theta``sin^2theta=1`Hint
Help VideoCorrect
Correct!
Incorrect
Trigonometric Functions
$$\sin\theta=\frac{\text{opposite}}{\text{hypotenuse}}$$$$\cos\theta=\frac{\text{adjacent}}{\text{hypotenuse}}$$$$\tan\theta=\frac{\text{opposite}}{\text{adjacent}}$$First, simplify the given equation`sin^2theta` `=` `1` `sqrt(sin^2theta)` `=` `sqrt1` Get the square root of both sides `sin theta` `=` `+-1` In the unit circle. mark out the coordinates on the horizontal and vertical axisKeep in mind that the radius of a unit circle is `1`Now, recall that in a coordinate, `(x,y)=(cos theta, sin theta)``sin theta=+-1`The `y` value in these coordinates match the value of `sin theta`. Therefore, `theta=pi/2,(3pi)/2``theta=pi/2,(3pi)/2` -
Question 3 of 3
3. Question
Given that `0≤theta≤2pi`, solve for `theta``costheta=-1`Hint
Help VideoCorrect
Exceptional!
Incorrect
Trigonometric Functions
$$\sin\theta=\frac{\text{opposite}}{\text{hypotenuse}}$$$$\cos\theta=\frac{\text{adjacent}}{\text{hypotenuse}}$$$$\tan\theta=\frac{\text{opposite}}{\text{adjacent}}$$In the unit circle. mark out the coordinates on the horizontal and vertical axisKeep in mind that the radius of a unit circle is `1`Now, recall that in a coordinate, `(x,y)=(cos theta, sin theta)``cos theta=-1`The `x` value in `pi` the value of `cos theta`. Therefore, `theta=pi``theta=pi`
Quizzes
- Converting Angle Measures 1
- Converting Angle Measures 2
- Converting Angle Measures 3
- Finding the Central Angle in a Circle
- Finding Areas in a Circle
- Values on the Unit Circle
- Finding Missing Angles Using the Unit Circle
- Trigonometric Ratios in the Unit Circle
- Trig Exact Values 1
- Trig Exact Values 2
- Trig Equations
- Derivative of a Trigonometric Function 1
- Derivative of a Trigonometric Function 2
- Derivative of a Trigonometric Function 3
- Applications of Differentiation
- Integral of a Trigonometric Function 1
- Integral of a Trigonometric Function 2
- Applications of Integration
- Graphing Trigonometric Functions 1
- Graphing Trigonometric Functions 2
- Graphing Trigonometric Functions 3
- Graphing Trigonometric Functions 4