Information
You have already completed the quiz before. Hence you can not start it again.
You must sign in or sign up to start the quiz.
You have to finish following quiz, to start this quiz:
Loading...
-
Question 1 of 5
Find the derivative using the chain rule
(3x+tan 7x)6
Incorrect
Loaded: 0%
Progress: 0%
0:00
Derivatives of Trigonometric Functions
Chain Rule
y′=n⋅(f(x))n−1⋅f′(x)
First, identify the values of the function
f(x) |
= |
xn |
f(x) |
= |
(3x+tan7x)6 |
Finally, substitute the values into the chain rule
y’ |
= |
\color{#e65021}{n}\cdot(\color{#004ec4}{f(x)})^{\color{#e65021}{n}-1}\cdot\color{#00880A}{f'(x)} |
|
|
= |
\color{#e65021}{6}\cdot(\color{#004ec4}{3x+\text{tan}\;7x})^{\color{#e65021}{6}-1}\cdot\color{#00880A}{f'(3x+\text{tan}\;7x)} |
Substitute known values |
|
|
= |
6\;(3x+\text{tan}\;7x)^{5}\cdot\color{#00880A}{3+\text{sec}^2\;7x\cdot7} |
Differentiate the values |
|
|
= |
6\;(3x+\text{tan}\;7x)^{5}(3+7\text{sec}^2\;7x) |
Evaluate |
y’=6(3x+\text(tan) 7x)^5(3+7\text(sec)^2 7x)
-
Question 2 of 5
Find the derivative using the chain rule
sin^(-1)x
Incorrect
Derivatives of Trigonometric Functions
y'(\text(sin))=\text(cos)
y'(\text(cos))=-\text(sin)
y'(\text(tan))=\text(sec)^2
Chain Rule
y’=\color{#e65021}{n}\cdot(\color{#004ec4}{f(x)})^{\color{#e65021}{n}-1}\cdot\color{#00880A}{f'(x)}
The expression can also be written as
Next, identify the values of the function
f(x) |
= |
\color{#9a00c7}{x}^{\color{#e65021}{n}} |
f(x) |
= |
\color{#9a00c7}{\text{sin}\;x}^{\color{#e65021}{-1}} |
Finally, substitute the values into the chain rule
y’ |
= |
\color{#e65021}{n}\cdot(\color{#004ec4}{f(x)})^{\color{#e65021}{n}-1}\cdot\color{#00880A}{f'(x)} |
|
|
= |
\color{#e65021}{-1}\cdot(\color{#004ec4}{\text{sin}\;x})^{\color{#e65021}{-1}-1}\cdot\color{#00880A}{f'(\text{sin}\;x)} |
Substitute known values |
|
|
= |
(-\text{sin}\;x)^{-2}\cdot\color{#00880A}{\text{cos}\;x} |
Differentiate the values |
|
|
= |
-\frac{\text{cos}\;x}{\text{sin}^2\;x} |
Reciprocate \text(sin)^2x |
y’=-(\text(cos) x)/(\text(sin)^2 x)
-
Question 3 of 5
Find the derivative using the chain rule
(cos x+sin x)^2
Incorrect
Loaded: 0%
Progress: 0%
0:00
Derivatives of Trigonometric Functions
y'(\text(sin))=\text(cos)
y'(\text(cos))=-\text(sin)
y'(\text(tan))=\text(sec)^2
Chain Rule
y’=\color{#e65021}{n}\cdot(\color{#004ec4}{f(x)})^{\color{#e65021}{n}-1}\cdot\color{#00880A}{f'(x)}
First, identify the values of the function
f(x) |
= |
\color{#9a00c7}{x}^{\color{#e65021}{n}} |
f(x) |
= |
\color{#9a00c7}{(\text{cos}\;x+\text{sin}\;x)}^{\color{#e65021}{2}} |
x |
= |
\text(cos) x+\text(sin) x |
n |
= |
2 |
Finally, substitute the values into the chain rule
y’ |
= |
\color{#e65021}{n}\cdot(\color{#004ec4}{f(x)})^{\color{#e65021}{n}-1}\cdot\color{#00880A}{f'(x)} |
|
|
= |
\color{#e65021}{2}\cdot(\color{#004ec4}{\text{cos}\;x+\text{sin}\;x})^{\color{#e65021}{2}-1}\cdot\color{#00880A}{f'(\text{cos}\;x+\text{sin}\;x)} |
Substitute known values |
|
|
= |
2\;(\text{cos}\;x+\text{sin}\;x)(\color{#00880A}{-\text{sin}\;x+\text{cos}\;x}) |
Differentiate the values |
|
|
= |
2(\text{cos}^2\;x-\text{sin}^2\;x) |
Evaluate |
y’=2(\text(cos)^2 x-\text(sin)^2 x)
-
Question 4 of 5
Find the derivative using the chain rule
3/(sin^2 3x)
Incorrect
Loaded: 0%
Progress: 0%
0:00
Derivatives of Trigonometric Functions
y'(\text(sin))=\text(cos)
y'(\text(cos))=-\text(sin)
y'(\text(tan))=\text(sec)^2
Chain Rule
y’=\color{#e65021}{n}\cdot(\color{#004ec4}{f(x)})^{\color{#e65021}{n}-1}\cdot\color{#00880A}{f'(x)}
The expression can also be written as
Remove the denominator by reciprocating its value
3/(\text(sin) 3x)^2 |
= |
3(\text(sin) 3x)^(-2) |
Reciprocate the denominator |
Next, identify the values of the function
f(x) |
= |
\color{#9a00c7}{x}^{\color{#e65021}{n}} |
f(x) |
= |
3(\color{#9a00c7}{\text{sin}\;3x})^{\color{#e65021}{-2}} |
Finally, substitute the values into the chain rule
y’ |
= |
\color{#e65021}{n}\cdot(\color{#004ec4}{f(x)})^{\color{#e65021}{n}-1}\cdot\color{#00880A}{f'(x)} |
|
|
= |
3\cdot\color{#e65021}{-2}\cdot(\color{#004ec4}{\text{sin}\;3x})^{\color{#e65021}{-2}-1}\cdot\color{#00880A}{f'(\text{sin}\;3x)} |
Substitute known values |
|
|
= |
-6\;(\text{sin}\;3x)^{-3}\cdot\color{#00880A}{\text{cos}\;3x\cdot3} |
Differentiate the values |
|
|
= |
\frac{-6\cdot3\text{cos}\;3x}{\text{sin}^3\;3x} |
Reciprocate (\text(sin) 3x)^(-3) |
|
|
= |
\frac{-18\;\text{cos}\;3x}{\text{sin}^3\;3x} |
Evaluate |
y’=(-18 \text(cos) 3x)/(\text(sin)^3 3x)
-
Question 5 of 5
Find the derivative using the product rule
x^4 cos3x
Incorrect
Loaded: 0%
Progress: 0%
0:00
Derivatives of Trigonometric Functions
y'(\text(sin))=\text(cos)
y'(\text(cos))=-\text(sin)
y'(\text(tan))=\text(sec)^2
Product Rule
\frac{dy}{dx}=\color{#9a00c7}{v}\color{#e65021}{\frac{du}{dx}}+\color{#00880A}{u}\color{#004ec4}{\frac{dv}{dx}}
First, find the derivative of u and v
Derivative of u:
u |
= |
x^4 |
u’ |
= |
(du)/(dx) |
= |
4x^3 |
Power Rule |
Derivative of v:
v |
= |
\text(cos) 3x |
v’ |
= |
(dv)/(dx) |
= |
-\text(sin) 3x*3 |
Chain Rule |
Substitute the components into the product rule
\frac{dy}{dx} |
= |
\color{#9a00c7}{v}\color{#e65021}{\frac{du}{dx}}+\color{#00880A}{u}\color{#004ec4}{\frac{dv}{dx}} |
|
(dy)/(dx) |
= |
(\color{#9a00c7}{\text{cos}\;3x}\cdot\color{#e65021}{4x^3})+(\color{#00880A}{x^4}\cdot\color{#004ec4}{-\text{sin}\;3x\cdot3}) |
Substitute known values |
y’ |
= |
4x^3\text(cos) 3x-3x^4\text(sin) 3x |
Evaluate |
y’=4x^3\text(cos) 3x-3x^4\text(sin) 3x