Years
>
Year 12>
Trigonometric Functions>
Derivative of a Trigonometric Function>
Derivative of a Trigonometric Function 2Derivative of a Trigonometric Function 2
Try VividMath Premium to unlock full access
Time limit: 0
Quiz summary
0 of 5 questions completed
Questions:
- 1
- 2
- 3
- 4
- 5
Information
–
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading...
You must sign in or sign up to start the quiz.
You have to finish following quiz, to start this quiz:
Loading...
- 1
- 2
- 3
- 4
- 5
- Answered
- Review
-
Question 1 of 5
1. Question
Find the derivative using the chain rule`(3x+tan 7x)^6`Hint
Help VideoCorrect
Well Done!
Incorrect
Derivatives of Trigonometric Functions
`y'(\text(sin))=\text(cos)``y'(\text(cos))=-\text(sin)``y'(\text(tan))=\text(sec)^2`Chain Rule
$$y’=\color{#e65021}{n}\cdot(\color{#004ec4}{f(x)})^{\color{#e65021}{n}-1}\cdot\color{#00880A}{f'(x)}$$First, identify the values of the function`f(x)` `=` $$\color{#9a00c7}{x}^{\color{#e65021}{n}}$$ `f(x)` `=` $$\color{#9a00c7}{(3x+\text{tan}\;7x)}^{\color{#e65021}{6}}$$ `x` `=` `3x+\text(tan) 7x` `n` `=` `6` Finally, substitute the values into the chain rule`y’` `=` $$\color{#e65021}{n}\cdot(\color{#004ec4}{f(x)})^{\color{#e65021}{n}-1}\cdot\color{#00880A}{f'(x)}$$ `=` $$\color{#e65021}{6}\cdot(\color{#004ec4}{3x+\text{tan}\;7x})^{\color{#e65021}{6}-1}\cdot\color{#00880A}{f'(3x+\text{tan}\;7x)}$$ Substitute known values `=` $$6\;(3x+\text{tan}\;7x)^{5}\cdot\color{#00880A}{3+\text{sec}^2\;7x\cdot7}$$ Differentiate the values `=` $$6\;(3x+\text{tan}\;7x)^{5}(3+7\text{sec}^2\;7x)$$ Evaluate `y’=6(3x+\text(tan) 7x)^5(3+7\text(sec)^2 7x)` -
Question 2 of 5
2. Question
Find the derivative using the chain rule`sin^(-1)x`Hint
Help VideoCorrect
Correct!
Incorrect
Derivatives of Trigonometric Functions
`y'(\text(sin))=\text(cos)``y'(\text(cos))=-\text(sin)``y'(\text(tan))=\text(sec)^2`Chain Rule
$$y’=\color{#e65021}{n}\cdot(\color{#004ec4}{f(x)})^{\color{#e65021}{n}-1}\cdot\color{#00880A}{f'(x)}$$The expression can also be written as`(\text(sin) x)^(-1)` Next, identify the values of the function`f(x)` `=` $$\color{#9a00c7}{x}^{\color{#e65021}{n}}$$ `f(x)` `=` $$\color{#9a00c7}{\text{sin}\;x}^{\color{#e65021}{-1}}$$ `x` `=` `\text(sin) x` `n` `=` `-1` Finally, substitute the values into the chain rule`y’` `=` $$\color{#e65021}{n}\cdot(\color{#004ec4}{f(x)})^{\color{#e65021}{n}-1}\cdot\color{#00880A}{f'(x)}$$ `=` $$\color{#e65021}{-1}\cdot(\color{#004ec4}{\text{sin}\;x})^{\color{#e65021}{-1}-1}\cdot\color{#00880A}{f'(\text{sin}\;x)}$$ Substitute known values `=` $$(-\text{sin}\;x)^{-2}\cdot\color{#00880A}{\text{cos}\;x}$$ Differentiate the values `=` $$-\frac{\text{cos}\;x}{\text{sin}^2\;x}$$ Reciprocate `\text(sin)^2x` `y’=-(\text(cos) x)/(\text(sin)^2 x)` -
Question 3 of 5
3. Question
Find the derivative using the chain rule`(cos x+sin x)^2`Hint
Help VideoCorrect
Fantastic!
Incorrect
Derivatives of Trigonometric Functions
`y'(\text(sin))=\text(cos)``y'(\text(cos))=-\text(sin)``y'(\text(tan))=\text(sec)^2`Chain Rule
$$y’=\color{#e65021}{n}\cdot(\color{#004ec4}{f(x)})^{\color{#e65021}{n}-1}\cdot\color{#00880A}{f'(x)}$$First, identify the values of the function`f(x)` `=` $$\color{#9a00c7}{x}^{\color{#e65021}{n}}$$ `f(x)` `=` $$\color{#9a00c7}{(\text{cos}\;x+\text{sin}\;x)}^{\color{#e65021}{2}}$$ `x` `=` `\text(cos) x+\text(sin) x` `n` `=` `2` Finally, substitute the values into the chain rule`y’` `=` $$\color{#e65021}{n}\cdot(\color{#004ec4}{f(x)})^{\color{#e65021}{n}-1}\cdot\color{#00880A}{f'(x)}$$ `=` $$\color{#e65021}{2}\cdot(\color{#004ec4}{\text{cos}\;x+\text{sin}\;x})^{\color{#e65021}{2}-1}\cdot\color{#00880A}{f'(\text{cos}\;x+\text{sin}\;x)}$$ Substitute known values `=` $$2\;(\text{cos}\;x+\text{sin}\;x)(\color{#00880A}{-\text{sin}\;x+\text{cos}\;x})$$ Differentiate the values `=` $$2(\text{cos}^2\;x-\text{sin}^2\;x)$$ Evaluate `y’=2(\text(cos)^2 x-\text(sin)^2 x)` -
Question 4 of 5
4. Question
Find the derivative using the chain rule`3/(sin^2 3x)`Hint
Help VideoCorrect
Nice Job!
Incorrect
Derivatives of Trigonometric Functions
`y'(\text(sin))=\text(cos)``y'(\text(cos))=-\text(sin)``y'(\text(tan))=\text(sec)^2`Chain Rule
$$y’=\color{#e65021}{n}\cdot(\color{#004ec4}{f(x)})^{\color{#e65021}{n}-1}\cdot\color{#00880A}{f'(x)}$$The expression can also be written as`3/(\text(sin) 3x)^2` Remove the denominator by reciprocating its value`3/(\text(sin) 3x)^2` `=` `3(\text(sin) 3x)^(-2)` Reciprocate the denominator Next, identify the values of the function`f(x)` `=` $$\color{#9a00c7}{x}^{\color{#e65021}{n}}$$ `f(x)` `=` $$3(\color{#9a00c7}{\text{sin}\;3x})^{\color{#e65021}{-2}}$$ `x` `=` `\text(sin) 3x` `n` `=` `-2` Finally, substitute the values into the chain rule`y’` `=` $$\color{#e65021}{n}\cdot(\color{#004ec4}{f(x)})^{\color{#e65021}{n}-1}\cdot\color{#00880A}{f'(x)}$$ `=` $$3\cdot\color{#e65021}{-2}\cdot(\color{#004ec4}{\text{sin}\;3x})^{\color{#e65021}{-2}-1}\cdot\color{#00880A}{f'(\text{sin}\;3x)}$$ Substitute known values `=` $$-6\;(\text{sin}\;3x)^{-3}\cdot\color{#00880A}{\text{cos}\;3x\cdot3}$$ Differentiate the values `=` $$\frac{-6\cdot3\text{cos}\;3x}{\text{sin}^3\;3x}$$ Reciprocate `(\text(sin) 3x)^(-3)` `=` $$\frac{-18\;\text{cos}\;3x}{\text{sin}^3\;3x}$$ Evaluate `y’=(-18 \text(cos) 3x)/(\text(sin)^3 3x)` -
Question 5 of 5
5. Question
Find the derivative using the product rule`x^4 cos3x`Hint
Help VideoCorrect
Well Done!
Incorrect
Derivatives of Trigonometric Functions
`y'(\text(sin))=\text(cos)``y'(\text(cos))=-\text(sin)``y'(\text(tan))=\text(sec)^2`Product Rule
$$\frac{dy}{dx}=\color{#9a00c7}{v}\color{#e65021}{\frac{du}{dx}}+\color{#00880A}{u}\color{#004ec4}{\frac{dv}{dx}}$$First, find the derivative of `u` and `v`Derivative of `u`:`u` `=` `x^4` `u’` `=` `(du)/(dx)` `=` `4x^3` Power Rule Derivative of `v`:`v` `=` `\text(cos) 3x` `v’` `=` `(dv)/(dx)` `=` `-\text(sin) 3x*3` Chain Rule Substitute the components into the product rule$$\frac{dy}{dx}$$ `=` $$\color{#9a00c7}{v}\color{#e65021}{\frac{du}{dx}}+\color{#00880A}{u}\color{#004ec4}{\frac{dv}{dx}}$$ `(dy)/(dx)` `=` $$(\color{#9a00c7}{\text{cos}\;3x}\cdot\color{#e65021}{4x^3})+(\color{#00880A}{x^4}\cdot\color{#004ec4}{-\text{sin}\;3x\cdot3})$$ Substitute known values `y’` `=` `4x^3\text(cos) 3x-3x^4\text(sin) 3x` Evaluate `y’=4x^3\text(cos) 3x-3x^4\text(sin) 3x`
Quizzes
- Converting Angle Measures 1
- Converting Angle Measures 2
- Converting Angle Measures 3
- Finding the Central Angle in a Circle
- Finding Areas in a Circle
- Values on the Unit Circle
- Finding Missing Angles Using the Unit Circle
- Trigonometric Ratios in the Unit Circle
- Trig Exact Values 1
- Trig Exact Values 2
- Trig Equations
- Derivative of a Trigonometric Function 1
- Derivative of a Trigonometric Function 2
- Derivative of a Trigonometric Function 3
- Applications of Differentiation
- Integral of a Trigonometric Function 1
- Integral of a Trigonometric Function 2
- Applications of Integration
- Graphing Trigonometric Functions 1
- Graphing Trigonometric Functions 2
- Graphing Trigonometric Functions 3
- Graphing Trigonometric Functions 4