Years
>
Year 9>
Products and Factors>
Factorise by Grouping in Pairs>
Factorise by Grouping in PairsFactorise by Grouping in Pairs
Try VividMath Premium to unlock full access
Time limit: 0
Quiz summary
0 of 7 questions completed
Questions:
- 1
- 2
- 3
- 4
- 5
- 6
- 7
Information
–
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading...
You must sign in or sign up to start the quiz.
You have to finish following quiz, to start this quiz:
Loading...
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- Answered
- Review
-
Question 1 of 7
1. Question
Factor.`7(x+5)+x(x+5)`Hint
Help VideoCorrect
Keep Going!
Incorrect
Factoring by Grouping in Pairs
$$\color{#00880A}{a}(\color{#9a00c7}{c}+\color{#9a00c7}{d})+\color{#00880A}{b}(\color{#9a00c7}{c}+\color{#9a00c7}{d})=(\color{#00880A}{a}+\color{#00880A}{b})(\color{#9a00c7}{c}+\color{#9a00c7}{d})$$Method OneFirst, label the values in the expression:$$\color{#00880A}{a}(\color{#9a00c7}{c}+\color{#9a00c7}{d})+\color{#00880A}{b}(\color{#9a00c7}{c}+\color{#9a00c7}{d})$$`7(x+5)+x(x+5)``a=7``b=x``c=x``d=5`Substitute the values into the formula given for Factoring by Grouping in Pairs.$$\color{#00880A}{a}(\color{#9a00c7}{c}+\color{#9a00c7}{d})+\color{#00880A}{b}(\color{#9a00c7}{c}+\color{#9a00c7}{d})$$ `=` $$(\color{#00880A}{a}+\color{#00880A}{b})(\color{#9a00c7}{c}+\color{#9a00c7}{d})$$ $$\color{#00880A}{7}(\color{#9a00c7}{x}+\color{#9a00c7}{5})+\color{#00880A}{x}(\color{#9a00c7}{x}+\color{#9a00c7}{5})$$ `=` $$(\color{#00880A}{7}+\color{#00880A}{x})(\color{#9a00c7}{x}+\color{#9a00c7}{5})$$ `(7+x)(x+5)`Method TwoFirst, write the bracketed terms once.`7``(x+5)``+x``(x+5)``(x+5)`Then place the coefficients in a separate bracket.`7``(x+5)``+x``(x+5)``(7+x)``(x+5)``(7+x)(x+5)` -
Question 2 of 7
2. Question
Factor.`6a(m+2)-n(m+2)`Hint
Help VideoCorrect
Great Work!
Incorrect
Factoring by Grouping in Pairs
$$\color{#00880A}{a}(\color{#9a00c7}{c}+\color{#9a00c7}{d})+\color{#00880A}{b}(\color{#9a00c7}{c}+\color{#9a00c7}{d})=(\color{#00880A}{a}+\color{#00880A}{b})(\color{#9a00c7}{c}+\color{#9a00c7}{d})$$Method OneFirst, label the values in the expression:$$\color{#00880A}{a}(\color{#9a00c7}{c}+\color{#9a00c7}{d})+\color{#00880A}{b}(\color{#9a00c7}{c}+\color{#9a00c7}{d})$$`6a(m+2)-n(m+2)``a=6a``b=-n``c=m``d=2`Substitute the values into the formula given for Factoring by Grouping in Pairs.$$\color{#00880A}{a}(\color{#9a00c7}{c}+\color{#9a00c7}{d})+\color{#00880A}{b}(\color{#9a00c7}{c}+\color{#9a00c7}{d})$$ `=` $$(\color{#00880A}{a}+\color{#00880A}{b})(\color{#9a00c7}{c}+\color{#9a00c7}{d})$$ $$\color{#00880A}{6a}(\color{#9a00c7}{m}+\color{#9a00c7}{2})\color{#00880A}{-n}(\color{#9a00c7}{m}+\color{#9a00c7}{2})$$ `=` $$[\color{#00880A}{6a}+(\color{#00880A}{-n})](\color{#9a00c7}{m}+\color{#9a00c7}{2})$$ `=` `(6a-n)(m+2)` `(6a-n)(m+2)`Method TwoFirst, write the bracketed terms once.`6a``(m+2)``-n``(m+2)``(m+2)`Then place the coefficients in a separate bracket.`6a``(m+2)``-n``(m+2)``(6a-n)``(m+2)``(6a-n)(m+2)` -
Question 3 of 7
3. Question
Factor.`ab+7a+3b+21`Hint
Help VideoCorrect
Keep Going!
Incorrect
Factoring by Grouping in Pairs
$$\color{#00880A}{a}(\color{#9a00c7}{c}+\color{#9a00c7}{d})+\color{#00880A}{b}(\color{#9a00c7}{c}+\color{#9a00c7}{d})=(\color{#00880A}{a}+\color{#00880A}{b})(\color{#9a00c7}{c}+\color{#9a00c7}{d})$$Method OneFirst, group the terms into pairs and factor them.First Pair$$ab+7a\color{#9E9E9E}{+3b+21}$$ `=` $$a(b+7)\color{#9E9E9E}{+3b+21}$$ `a(b+7)=ab+7a` Second Pair$$\color{#9E9E9E}{a(b+7)}+3b+21$$ `=` $$\color{#9E9E9E}{a(b+7)}+3(b+7)$$ `3(b+7)=3b+21` Next, label the values in the expression:$$\color{#00880A}{a}(\color{#9a00c7}{c}+\color{#9a00c7}{d})+\color{#00880A}{b}(\color{#9a00c7}{c}+\color{#9a00c7}{d})$$`a(b+7)+3(b+7)``a=a``b=3``c=b``d=7`Finally, substitute the values into the formula given for Factoring by Grouping in Pairs.$$\color{#00880A}{a}(\color{#9a00c7}{c}+\color{#9a00c7}{d})+\color{#00880A}{b}(\color{#9a00c7}{c}+\color{#9a00c7}{d})$$ `=` $$(\color{#00880A}{a}+\color{#00880A}{b})(\color{#9a00c7}{c}+\color{#9a00c7}{d})$$ $$\color{#00880A}{a}(\color{#9a00c7}{b}+\color{#9a00c7}{7})+\color{#00880A}{3}(\color{#9a00c7}{b}+\color{#9a00c7}{7})$$ `=` $$(\color{#00880A}{a}+\color{#00880A}{3})(\color{#9a00c7}{b}+\color{#9a00c7}{7})$$ `(a+3)(b+7)`Method TwoFirst, group the terms into pairs and factor them.First Pair$$ab+7a\color{#9E9E9E}{+3b+21}$$ `=` $$a(b+7)\color{#9E9E9E}{+3b+21}$$ `a(b+7)=ab+7a` Second Pair$$\color{#9E9E9E}{a(b+7)}+3b+21$$ `=` $$\color{#9E9E9E}{a(b+7)}+3(b+7)$$ `3(b+7)=3b+21` Next, write the bracketed terms once.`a``(b+7)``+3``(b+7)``(b+7)`Then place the coefficients in a separate bracket.`a``(b+7)``+3``(b+7)``(a+3)``(b+7)``(a+3)(b+7)` -
Question 4 of 7
4. Question
Factor.`3a+6b+8ca+16cb`Hint
Help VideoCorrect
Correct!
Incorrect
Factoring by Grouping in Pairs
$$\color{#00880A}{a}(\color{#9a00c7}{c}+\color{#9a00c7}{d})+\color{#00880A}{b}(\color{#9a00c7}{c}+\color{#9a00c7}{d})=(\color{#00880A}{a}+\color{#00880A}{b})(\color{#9a00c7}{c}+\color{#9a00c7}{d})$$Method OneFirst, group the terms into pairs and factor them.First Pair$$3a+6b\color{#9E9E9E}{+8ca+16cb}$$ `=` $$3(a+2b)\color{#9E9E9E}{+8ca+16cb}$$ `3(a+2b)=3a+6b` Second Pair$$\color{#9E9E9E}{3(a+2b)}+8ca+16cb$$ `=` $$\color{#9E9E9E}{a(a+2b)}+8c(a+2b)$$ `8c(a+2b)=8ca+16cb` Next, label the values in the expression:$$\color{#00880A}{a}(\color{#9a00c7}{c}+\color{#9a00c7}{d})+\color{#00880A}{b}(\color{#9a00c7}{c}+\color{#9a00c7}{d})$$`3(a+2b)+8c(a+2b)``a=3``b=8c``c=a``d=2b`Finally, substitute the values into the formula given for Factoring by Grouping in Pairs.$$\color{#00880A}{a}(\color{#9a00c7}{c}+\color{#9a00c7}{d})+\color{#00880A}{b}(\color{#9a00c7}{c}+\color{#9a00c7}{d})$$ `=` $$(\color{#00880A}{a}+\color{#00880A}{b})(\color{#9a00c7}{c}+\color{#9a00c7}{d})$$ $$\color{#00880A}{3}(\color{#9a00c7}{a}+\color{#9a00c7}{2b})+\color{#00880A}{8c}(\color{#9a00c7}{a}+\color{#9a00c7}{2b})$$ `=` $$(\color{#00880A}{3}+\color{#00880A}{8c})(\color{#9a00c7}{a}+\color{#9a00c7}{2b})$$ `(3+8c)(a+2b)`Method TwoFirst, group the terms into pairs and factor them.First Pair$$3a+6b\color{#9E9E9E}{+8ca+16cb}$$ `=` $$3(a+2b)\color{#9E9E9E}{+8ca+16cb}$$ `3(a+2b)=3a+6b` Second Pair$$\color{#9E9E9E}{3(a+2b)}+8ca+16cb$$ `=` $$\color{#9E9E9E}{a(a+2b)}+8c(a+2b)$$ `8c(a+2b)=8ca+16cb` Next, write the bracketed terms once.`3``(a+2b)``+8c``(a+2b)``(a+2b)`Then place the coefficients in a separate bracket.`3``(a+2b)``+8c``(a+2b)``(3+8c)``(a+2b)``(3+8c)(a+2b)` -
Question 5 of 7
5. Question
Factor.`x-7y+xz-7yz`Hint
Help VideoCorrect
Fantastic!
Incorrect
Factoring by Grouping in Pairs
$$\color{#00880A}{a}(\color{#9a00c7}{c}+\color{#9a00c7}{d})+\color{#00880A}{b}(\color{#9a00c7}{c}+\color{#9a00c7}{d})=(\color{#00880A}{a}+\color{#00880A}{b})(\color{#9a00c7}{c}+\color{#9a00c7}{d})$$Method OneFirst, group the terms into pairs and factor them.Pair terms with the same variables.First Pair$$x\color{#9E9E9E}{-7y}+xz\color{#9E9E9E}{-7yz}$$ `=` $$x(1+z)\color{#9E9E9E}{-7y-7yz}$$ `x(1+z)=x+xz` Second Pair$$\color{#9E9E9E}{x(1+z)}-7y-7yz$$ `=` $$\color{#9E9E9E}{x(1+z)}-7y(1+z)$$ `-7y(1+z)=-7y-7yz` Next, label the values in the expression:$$\color{#00880A}{a}(\color{#9a00c7}{c}+\color{#9a00c7}{d})+\color{#00880A}{b}(\color{#9a00c7}{c}+\color{#9a00c7}{d})$$`x(1+z)-7y(1+z)``a=x``b=-7y``c=1``d=z`Finally, substitute the values into the formula given for Factoring by Grouping in Pairs.$$\color{#00880A}{a}(\color{#9a00c7}{c}+\color{#9a00c7}{d})+\color{#00880A}{b}(\color{#9a00c7}{c}+\color{#9a00c7}{d})$$ `=` $$(\color{#00880A}{a}+\color{#00880A}{b})(\color{#9a00c7}{c}+\color{#9a00c7}{d})$$ $$\color{#00880A}{x}(\color{#9a00c7}{1}+\color{#9a00c7}{z})-\color{#00880A}{7y}(\color{#9a00c7}{1}+\color{#9a00c7}{z})$$ `=` $$[\color{#00880A}{x}+(\color{#00880A}{-7y})](\color{#9a00c7}{1}+\color{#9a00c7}{z})$$ `=` `(x-7y)(1+z)` `(x-7y)(1+z)`Method TwoFirst, group the terms into pairs and factor them.Pair terms with the same variables.First Pair$$x\color{#9E9E9E}{-7y}+xz\color{#9E9E9E}{-7yz}$$ `=` $$x(1+z)\color{#9E9E9E}{-7y-7yz}$$ `x(1+z)=x+xz` Second Pair$$\color{#9E9E9E}{x(1+z)}-7y-7yz$$ `=` $$\color{#9E9E9E}{x(1+z)}-7y(1+z)$$ `-7y(1+z)=-7y-7yz` Next, write the bracketed terms once.`x``(1+z)``-7y``(1+z)``(1+z)`Then place the coefficients in a separate bracket.`x``(1+z)``-7y``(1+z)``(x-7y)``(1+z)``(x-7y)(1+z)` -
Question 6 of 7
6. Question
Factor.`m^3+m^2+m+1`Hint
Help VideoCorrect
Nice Job!
Incorrect
Factoring by Grouping in Pairs
$$\color{#00880A}{a}(\color{#9a00c7}{c}+\color{#9a00c7}{d})+\color{#00880A}{b}(\color{#9a00c7}{c}+\color{#9a00c7}{d})=(\color{#00880A}{a}+\color{#00880A}{b})(\color{#9a00c7}{c}+\color{#9a00c7}{d})$$Method OneFirst, group the terms into pairs and factor them.First Pair$$m^3+m^2\color{#9E9E9E}{+m+1}$$ `=` $$m^2(m+1)\color{#9E9E9E}{+m+1}$$ `m^2(m+1)=m^3+m^2` Second Pair$$\color{#9E9E9E}{m^2(m+1)}+m+1$$ `=` $$\color{#9E9E9E}{m^2(m+1)}+1(m+1)$$ `1(m+1)=m+1` Next, label the values in the expression:$$\color{#00880A}{a}(\color{#9a00c7}{c}+\color{#9a00c7}{d})+\color{#00880A}{b}(\color{#9a00c7}{c}+\color{#9a00c7}{d})$$`m^2(m+1)+1(m+1)``a=m^2``b=1``c=m``d=1`Finally, substitute the values into the formula given for Factoring by Grouping in Pairs.$$\color{#00880A}{a}(\color{#9a00c7}{c}+\color{#9a00c7}{d})+\color{#00880A}{b}(\color{#9a00c7}{c}+\color{#9a00c7}{d})$$ `=` $$(\color{#00880A}{a}+\color{#00880A}{b})(\color{#9a00c7}{c}+\color{#9a00c7}{d})$$ $$\color{#00880A}{m^2}(\color{#9a00c7}{m}+\color{#9a00c7}{1})+\color{#00880A}{1}(\color{#9a00c7}{m}+\color{#9a00c7}{1})$$ `=` $$(\color{#00880A}{m^2}+\color{#00880A}{1})(\color{#9a00c7}{m}+\color{#9a00c7}{1})$$ `(m^2+1)(m+1)`Method TwoFirst, group the terms into pairs and factor them.First Pair$$m^3+m^2\color{#9E9E9E}{+m+1}$$ `=` $$m^2(m+1)\color{#9E9E9E}{+m+1}$$ `m^2(m+1)=m^3+m^2` Second Pair$$\color{#9E9E9E}{m^2(m+1)}+m+1$$ `=` $$\color{#9E9E9E}{m^2(m+1)}+1(m+1)$$ `1(m+1)=m+1` Next, write the bracketed terms once.`m^2``(m+1)``+1``(m+1)``(m+1)`Then place the coefficients in a separate bracket.`m^2``(m+1)``+1``(m+1)``(m^2+1)``(m+1)``(m^2+1)(m+1)` -
Question 7 of 7
7. Question
Factor.`-4x(y+7)-8x^2(y+7)`Hint
Help VideoCorrect
Well Done!
Incorrect
Factoring by Grouping in Pairs
$$\color{#00880A}{a}(\color{#9a00c7}{c}+\color{#9a00c7}{d})+\color{#00880A}{b}(\color{#9a00c7}{c}+\color{#9a00c7}{d})=(\color{#00880A}{a}+\color{#00880A}{b})(\color{#9a00c7}{c}+\color{#9a00c7}{d})$$A Greatest Common Factor is the factor of two terms with the highest value.Method OneFirst, label the values in the expression:$$\color{#00880A}{a}(\color{#9a00c7}{c}+\color{#9a00c7}{d})+\color{#00880A}{b}(\color{#9a00c7}{c}+\color{#9a00c7}{d})$$`-4x(y+7)-8x^2(y+7)``a=-4x``b=-8x^2``c=y``d=7`Substitute the values into the formula given for Factoring by Grouping in Pairs, then simplify.$$\color{#00880A}{a}(\color{#9a00c7}{c}+\color{#9a00c7}{d})+\color{#00880A}{b}(\color{#9a00c7}{c}+\color{#9a00c7}{d})$$ `=` $$(\color{#00880A}{a}+\color{#00880A}{b})(\color{#9a00c7}{c}+\color{#9a00c7}{d})$$ `-4x(y+7)-8x^2(y+7)` `=` $$\left[\color{#00880A}{-4x}+\left(\color{#00880A}{-8x^2}\right)\right](\color{#9a00c7}{y}+\color{#9a00c7}{7})$$ `=` `(-4x-8x^2)(y+7)` Further factor the first bracket, `(-4x-8x^2)`, by using the Greatest Common Factor (HCF).Start by listing down their factors.Factors of `-4x`: `-1``times``4``times` `x`Factors of `-8x^2`: `-1``times2times``4``times` `x` `times x`Collect the common factors and multiply them all to get the HCF.HCF `=` `-1``times``4``times``x` `=` `-4x` Finally, factor by placing `-4x` outside a bracket.Also, place the given polynomial inside the bracket with each term divided by `-4x`, then simplify.`-4x[(-4xdiv-4x)+(-8x^2div-4x)]` `=` `-4x(1+2x)` Since this is only the factored first bracket, include the second bracket to get the final answer.`-4x(1+2x)(y+7)``-4x(1+2x)(y+7)`Method TwoFirst, write the bracketed terms once.`-4x``(y+7)``-8x^2``(y+7)``(y+7)`Then place the coefficients in a separate bracket.`-4x``(y+7)``-8x^2``(y+7)``(-4x-8x^2)``(y+7)`Further factor the first bracket, `(-4x-8x^2)`, by using the Greatest Common Factor (HCF).Start by listing down their factors.Factors of `-4x`: `-1``times``4``times` `x`Factors of `-8x^2`: `-1``times2times``4``times` `x` `times x`Collect the common factors and multiply them all to get the HCF.HCF `=` `-1``times``4``times``x` `=` `-4x` Finally, factor by placing `-4x` outside a bracket.Also, place the given polynomial inside the bracket with each term divided by `-4x`, then simplify.`-4x[(-4xdiv-4x)+(-8x^2div-4x)]` `=` `-4x(1+2x)` Since this is only the factored first bracket, include the second bracket to get the final answer.`-4x(1+2x)(y+7)``-4x(1+2x)(y+7)`
Quizzes
- Binomial Products – Distributive Property
- Binomial Products – FOIL Method
- FOIL Method – Same First Variable 1
- FOIL Method – Same First Variable 2
- FOIL Method – 3 Terms
- Expand Perfect Squares
- Difference of Two Squares
- Expand Longer Expressions
- Highest Common Factor 1
- Highest Common Factor 2
- Factorise a Polynomial (HCF)
- Factorise a Polynomial 1
- Factorise a Polynomial 2
- Factorise a Polynomial with Integers
- Factorise Difference of Two Squares 1
- Factorise Difference of Two Squares 2
- Factorise Difference of Two Squares 3
- Factorise by Grouping in Pairs
- Factorise Difference of Two Squares (Harder) 1
- Factorise Difference of Two Squares (Harder) 2
- Factorise Difference of Two Squares (Harder) 3
- Factorise Trinomials (Quadratics) 1
- Factorise Trinomials (Quadratics) 2
- Factorise Trinomials (Quadratics) 3
- Factorise Trinomials (Quadratics) w Coefficient more than 1 (1)
- Factorise Trinomials (Quadratics) w Coefficient more than 1 (2)
- Factorise Trinomials (Quadratics) w Coefficient more than 1 (3)
- Factorise Trinomials (Quadratics) – Complex