Combinations 1
Try VividMath Premium to unlock full access
Time limit: 0
Quiz summary
0 of 6 questions completed
Questions:
- 1
- 2
- 3
- 4
- 5
- 6
Information
–
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading...
You must sign in or sign up to start the quiz.
You have to finish following quiz, to start this quiz:
Loading...
- 1
- 2
- 3
- 4
- 5
- 6
- Answered
- Review
-
Question 1 of 6
1. Question
Evaluate$$_4 C_3$$- (4)
Hint
Help VideoCorrect
Well Done!
Incorrect
Use the combinations formula to find the number of ways an item can be chosen `(r)` from the total number of items `(n)`.Remember that order is not important in Combinations.Combination Formula
$$ _\color{purple}{n}C_{\color{green}{r}}=\frac{\color{purple}{n}!}{(\color{purple}{n}-\color{green}{r})!\color{green}{r}!} $$Substitute the values to the combination formula.`r=3``n=4`$$_\color{purple}{n}C_{\color{green}{r}}$$ `=` $$ \frac{\color{purple}{n}!}{(\color{purple}{n}-\color{green}{r})!\color{green}{r}!} $$ Combination Formula $$_\color{purple}{4}C_{\color{green}{3}}$$ `=` $$\frac{\color{purple}{4}!}{(\color{purple}{4}-\color{green}{3})!\color{green}{3}!} $$ Substitute the values of `r` and `n` `=` $$ \frac{4!}{1! 3!} $$ `=` $$ \frac{4\cdot{\color{#CC0000}{3}}\cdot{\color{#CC0000}{2}}\cdot{\color{#CC0000}{1}}}{1\cdot{\color{#CC0000}{3}}\cdot{\color{#CC0000}{2}}\cdot{\color{#CC0000}{1}}}$$ `=` $$ \frac{4}{1} $$ Cancel like terms `=` $$4$$ `4` -
Question 2 of 6
2. Question
Evaluate$$_{10} C_4$$- (210)
Hint
Help VideoCorrect
Nice Job!
Incorrect
Use the combinations formula to find the number of ways an item can be chosen `(r)` from the total number of items `(n)`.Remember that order is not important in Combinations.Combination Formula
$$ _\color{purple}{n}C_{\color{green}{r}}=\frac{\color{purple}{n}!}{(\color{purple}{n}-\color{green}{r})!\color{green}{r}!} $$Substitute the values to the combination formula.`r=4``n=10`$$_\color{purple}{n}C_{\color{green}{r}}$$ `=` $$ \frac{\color{purple}{n}!}{(\color{purple}{n}-\color{green}{r})!\color{green}{r}!} $$ Combination Formula $$_\color{purple}{4}C_{\color{green}{3}}$$ `=` $$\frac{\color{purple}{10}!}{(\color{purple}{10}-\color{green}{4})!\color{green}{4}!} $$ Substitute the values of `r` and `n` `=` $$ \frac{10!}{6! 4!} $$ `=` $$ \frac{10\cdot9\cdot8\cdot7\cdot{\color{#CC0000}{6}}\cdot{\color{#CC0000}{5}}\cdot{\color{#CC0000}{4}}\cdot{\color{#CC0000}{3}}\cdot{\color{#CC0000}{2}}\cdot{\color{#CC0000}{1}}}{{\color{#CC0000}{6}}\cdot{\color{#CC0000}{5}}\cdot{\color{#CC0000}{4}}\cdot{\color{#CC0000}{3}}\cdot{\color{#CC0000}{2}}\cdot{\color{#CC0000}{1}}\cdot4\cdot3\cdot2\cdot1}$$ `=` $$ \frac{10\cdot9\cdot{\color{#CC0000}{8}}\cdot7}{{\color{#CC0000}{4}}\cdot3\cdot{\color{#CC0000}{2}}\cdot1}$$ Cancel like terms `=` $$ \frac{10\cdot9\cdot7}{3\cdot1} $$ `4xx2=8` `=` $$ \frac{630}{3} $$ `=` $$210$$ `210` -
Question 3 of 6
3. Question
Evaluate$$_9 C_2$$- (36)
Hint
Help VideoCorrect
Excellent!
Incorrect
Use the combinations formula to find the number of ways an item can be chosen `(r)` from the total number of items `(n)`.Remember that order is not important in Combinations.Combination Formula
$$ _\color{purple}{n}C_{\color{green}{r}}=\frac{\color{purple}{n}!}{(\color{purple}{n}-\color{green}{r})!\color{green}{r}!} $$Substitute the values to the combination formula.`r=2``n=9`$$_\color{purple}{n}C_{\color{green}{r}}$$ `=` $$ \frac{\color{purple}{n}!}{(\color{purple}{n}-\color{green}{r})!\color{green}{r}!} $$ Combination Formula $$_\color{purple}{4}C_{\color{green}{3}}$$ `=` $$\frac{\color{purple}{9}!}{(\color{purple}{9}-\color{green}{2})!\color{green}{2}!} $$ Substitute the values of `r` and `n` `=` $$ \frac{9!}{7! 2!} $$ `=` $$ \frac{9\cdot8\cdot{\color{#CC0000}{7}}\cdot{\color{#CC0000}{6}}\cdot{\color{#CC0000}{5}}\cdot{\color{#CC0000}{4}}\cdot{\color{#CC0000}{3}}\cdot{\color{#CC0000}{2}}\cdot{\color{#CC0000}{1}}}{{\color{#CC0000}{7}}\cdot{\color{#CC0000}{6}}\cdot{\color{#CC0000}{5}}\cdot{\color{#CC0000}{4}}\cdot{\color{#CC0000}{3}}\cdot{\color{#CC0000}{2}}\cdot{\color{#CC0000}{1}}\cdot2\cdot1}$$ `=` $$ \frac{9\cdot8}{2\cdot1} $$ Cancel like terms `=` $$ \frac{72}{2} $$ `=` $$36$$ `36` -
Question 4 of 6
4. Question
How many ways can we pick `5` paintings from a gallery with `14` paintings?- (2002)
Hint
Help VideoCorrect
Fantastic!
Incorrect
Use the combinations formula to find the number of ways an item can be chosen `(r)` from the total number of items `(n)`.Remember that order is not important in Combinations.Combination Formula
$$ _\color{purple}{n}C_{\color{green}{r}}=\frac{\color{purple}{n}!}{(\color{purple}{n}-\color{green}{r})!\color{green}{r}!} $$We need to find the different ways that `5` paintings `(r)` can be selected from a total of `14` paintings `(n)``r=5``n=14`$$_\color{purple}{n}C_{\color{green}{r}}$$ `=` $$ \frac{\color{purple}{n}!}{(\color{purple}{n}-\color{green}{r})!\color{green}{r}!} $$ Combination Formula $$_\color{purple}{13}C_{\color{green}{11}}$$ `=` $$\frac{\color{purple}{14}!}{(\color{purple}{14}-\color{green}{5})!\color{green}{5}!} $$ Substitute the values of `r` and `n` `=` $$ \frac{14!}{9! 5!} $$ `=` $$ \frac{14\cdot13\cdot12\cdot11\cdot10\cdot{\color{#CC0000}{9}}\cdot{\color{#CC0000}{8}}\cdot{\color{#CC0000}{7}}\cdot{\color{#CC0000}{6}}\cdot{\color{#CC0000}{5}}\cdot{\color{#CC0000}{4}}\cdot{\color{#CC0000}{3}}\cdot{\color{#CC0000}{2}}\cdot{\color{#CC0000}{1}}}{{\color{#CC0000}{9}}\cdot{\color{#CC0000}{8}}\cdot{\color{#CC0000}{7}}\cdot{\color{#CC0000}{6}}\cdot{\color{#CC0000}{5}}\cdot{\color{#CC0000}{4}}\cdot{\color{#CC0000}{3}}\cdot{\color{#CC0000}{2}}\cdot{\color{#CC0000}{1}}\cdot5\cdot4\cdot3\cdot2\cdot1} $$ `=` $$ \frac{240\;240}{120} $$ Cancel like terms `=` $$2002$$ `2002` -
Question 5 of 6
5. Question
How many ways can a soccer team of `11` players be selected from a squad of `13` existing players?Hint
Help VideoCorrect
Keep Going!
Incorrect
Use the combinations formula to find the number of ways an item can be chosen `(r)` from the total number of items `(n)`.Remember that order is not important in Combinations.Combination Formula
$$ _\color{purple}{n}C_{\color{green}{r}}=\frac{\color{purple}{n}!}{(\color{purple}{n}-\color{green}{r})!\color{green}{r}!} $$We need to find the different ways that a team of `11` players `(r)` can be selected from a total of `13` players `(n)``r=11``n=13`$$_\color{purple}{n}C_{\color{green}{r}}$$ `=` $$ \frac{\color{purple}{n}!}{(\color{purple}{n}-\color{green}{r})!\color{green}{r}!} $$ Combination Formula $$_\color{purple}{13}C_{\color{green}{11}}$$ `=` $$\frac{\color{purple}{13}!}{(\color{purple}{13}-\color{green}{11})!\color{green}{11}!} $$ Substitute the values of `r` and `n` `=` $$ \frac{13!}{2! 11!} $$ `=` $$ \frac{13\cdot12\cdot{\color{#CC0000}{11}}\cdot{\color{#CC0000}{10}}\cdot{\color{#CC0000}{9}}\cdot{\color{#CC0000}{8}}\cdot{\color{#CC0000}{7}}\cdot{\color{#CC0000}{6}}\cdot{\color{#CC0000}{5}}\cdot{\color{#CC0000}{4}}\cdot{\color{#CC0000}{3}}\cdot{\color{#CC0000}{2}}\cdot{\color{#CC0000}{1}}}{2\cdot1\cdot{\color{#CC0000}{11}}\cdot{\color{#CC0000}{10}}\cdot{\color{#CC0000}{9}}\cdot{\color{#CC0000}{8}}\cdot{\color{#CC0000}{7}}\cdot{\color{#CC0000}{6}}\cdot{\color{#CC0000}{5}}\cdot{\color{#CC0000}{4}}\cdot{\color{#CC0000}{3}}\cdot{\color{#CC0000}{2}}\cdot{\color{#CC0000}{1}}} $$ `=` $$ \frac{156}{2} $$ Cancel like terms `=` $$78$$ `78` -
Question 6 of 6
6. Question
How many ways can we form a `5` man basketball team from a group of `9` players?- (126)
Hint
Help VideoCorrect
Correct!
Incorrect
Use the combinations formula to find the number of ways an item can be chosen `(r)` from the total number of items `(n)`.Remember that order is not important in Combinations.Combination Formula
$$ _\color{purple}{n}C_{\color{green}{r}}=\frac{\color{purple}{n}!}{(\color{purple}{n}-\color{green}{r})!\color{green}{r}!} $$We need to find the different ways that a team of `5` players `(r)` can be selected from a total of `9` players `(n)``r=5``n=9`$$_\color{purple}{n}C_{\color{green}{r}}$$ `=` $$ \frac{\color{purple}{n}!}{(\color{purple}{n}-\color{green}{r})!\color{green}{r}!} $$ Combination Formula $$_\color{purple}{9}C_{\color{green}{5}}$$ `=` $$\frac{\color{purple}{9}!}{(\color{purple}{9}-\color{green}{5})!\color{green}{5}!} $$ Substitute the values of `r` and `n` `=` $$ \frac{9!}{4! 5!} $$ `=` $$ \frac{9\cdot8\cdot7\cdot6\cdot{\color{#CC0000}{5}}\cdot{\color{#CC0000}{4}}\cdot{\color{#CC0000}{3}}\cdot{\color{#CC0000}{2}}\cdot{\color{#CC0000}{1}}}{4\cdot3\cdot2\cdot1\cdot{\color{#CC0000}{5}}\cdot{\color{#CC0000}{4}}\cdot{\color{#CC0000}{3}}\cdot{\color{#CC0000}{2}}\cdot{\color{#CC0000}{1}}} $$ `=` $$ \frac{9\cdot{\color{#CC0000}{8}}\cdot7\cdot6}{{\color{#CC0000}{4}}\cdot3\cdot{\color{#CC0000}{2}}\cdot1} $$ Cancel like terms `=` $$ \frac{9\cdot7\cdot6}{3\cdot1} $$ `4xx2=8` `=` $$ \frac{378}{3} $$ `=` $$126$$ `126`
Quizzes
- Factorial Notation
- Fundamental Counting Principle 1
- Fundamental Counting Principle 2
- Fundamental Counting Principle 3
- Combinations 1
- Combinations 2
- Combinations with Restrictions 1
- Combinations with Restrictions 2
- Combinations with Probability
- Basic Permutations 1
- Basic Permutations 2
- Basic Permutations 3
- Permutation Problems 1
- Permutation Problems 2
- Permutations with Repetitions 1
- Permutations with Repetitions 2
- Permutations with Restrictions 1
- Permutations with Restrictions 2
- Permutations with Restrictions 3
- Permutations with Restrictions 4