Change Of Base Formula
Try VividMath Premium to unlock full access
Time limit: 0
Quiz summary
0 of 4 questions completed
Questions:
- 1
- 2
- 3
- 4
Information
–
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading...
You must sign in or sign up to start the quiz.
You have to finish following quiz, to start this quiz:
Loading...
- 1
- 2
- 3
- 4
- Answered
- Review
-
Question 1 of 4
1. Question
Derive the Change of Base formula from the general equation`x=log_a N`Hint
Help VideoCorrect
Well Done!
Incorrect
Exponent Form
$$\color{#00880a}{N}={\color{#9a00c7}{a}}^x$$Logarithmic Form
$$x=\log_{\color{#9a00c7}{a}} \color{#00880a}{N}$$Laws of Logarithms
$$\log_b x^\color{#004ec4}{p}=\color{#004ec4}{p}\log_b x$$Transform the general logarithmic equation to exponent form$$x$$ `=` $$\log_{\color{#9a00c7}{a}} \color{#00880a}{N}$$ $$\color{#00880a}{N}$$ `=` $${\color{#9a00c7}{a}}^x$$ Insert logarithms of the same base to both sides, then solve for `x`$$\color{#D800AD}{N}$$ `=` $$\color{#D800AD}{a^x}$$ $$\log_b \color{#D800AD}{N}$$ `=` $$\log_b \color{#D800AD}{a^x}$$ $$\log_b N$$ `=` $$\log_b a^\color{#004ec4}{x}$$ $$\log_b N$$ `=` $$\color{#004ec4}{x}\log_b a$$ `log_b x^p=p log_b x` `log_b N``divide log_b a` `=` `x log_b a``divide log_b a` Divide both sides by `log_b a` `(log_b N)/(log_b a)` `=` `x` `x` `=` `(log_b N)/(log_b a)` Also, remember that, `x=log_a N`Hence, the Change of Base formula is: `log_a N=(log_b N)/(log_b a)``log_a N=(log_b N)/(log_b a)` -
Question 2 of 4
2. Question
Evaluate using Change of Base`log_2 9`Round answer to `5` decimal places- `log_2 9=` (3.16993)
Hint
Help VideoCorrect
Nice Job!
Incorrect
Exponent Form
$$\color{#00880a}{N}={\color{#9a00c7}{a}}^x$$Logarithmic Form
$$x=\log_{\color{#9a00c7}{a}} \color{#00880a}{N}$$Change of Base Formula
$$\log_\color{#9a00c7}{a} \color{#00880A}{N}=\frac{\log_b \color{#00880A}{N}}{\log_b \color{#9a00c7}{a}}$$Use the change of base formula, then use the calculator to solve the logarithm$$\log_\color{#9a00c7}{2} \color{#00880a}{9}$$ `=` $$\frac{\log_{10} \color{#00880a}{9}}{\log_{10} \color{#9a00c7}{2}}$$ Calculators use `10` as base for the log function `=` `3.16993` Compute using the calculator `log_2 9=3.16993` -
Question 3 of 4
3. Question
Solve for `x` using Change of Base`5^x=11`Round answer to `4` decimal places- `x=` (1.4899)
Hint
Help VideoCorrect
Excellent!
Incorrect
Exponent Form
$$\color{#00880a}{N}={\color{#9a00c7}{a}}^x$$Logarithmic Form
$$x=\log_{\color{#9a00c7}{a}} \color{#00880a}{N}$$Change of Base Formula
$$\log_\color{#9a00c7}{a} \color{#00880A}{N}=\frac{\log_b \color{#00880A}{N}}{\log_b \color{#9a00c7}{a}}$$Transform the given exponential equation to logarithmic form$$\color{#9a00c7}{5}^x$$ `=` $$\color{#00880a}{11}$$ $$x$$ `=` $$\log_\color{#9a00c7}{5} \color{#00880a}{11}$$ Use the change of base formula, then use the calculator to solve the logarithm$$x$$ `=` $$\log_\color{#9a00c7}{5} \color{#00880a}{11}$$ $$x$$ `=` $$\frac{\log_{10} \color{#00880a}{11}}{\log_{10} \color{#9a00c7}{5}}$$ Calculators use `10` as base for the log function `x` `=` `1.4899` Compute using the calculator `x=1.4899` -
Question 4 of 4
4. Question
Solve for `x` using Change of Base`2^x=0.062`Round answer to `4` decimal places- `x=` (-4.0116)
Hint
Help VideoCorrect
Fantastic!
Incorrect
Exponent Form
$$\color{#00880a}{N}={\color{#9a00c7}{a}}^x$$Logarithmic Form
$$x=\log_{\color{#9a00c7}{a}} \color{#00880a}{N}$$Change of Base Formula
$$\log_\color{#9a00c7}{a} \color{#00880A}{N}=\frac{\log_b \color{#00880A}{N}}{\log_b \color{#9a00c7}{a}}$$Transform the given exponential equation to logarithmic form$$\color{#9a00c7}{2}^x$$ `=` $$\color{#00880a}{0.062}$$ $$x$$ `=` $$\log_\color{#9a00c7}{2} \color{#00880a}{0.062}$$ Use the change of base formula, then use the calculator to solve the logarithm$$x$$ `=` $$\log_\color{#9a00c7}{2} \color{#00880a}{0.062}$$ $$x$$ `=` $$\frac{\log_{10} \color{#00880a}{0.062}}{\log_{10} \color{#9a00c7}{2}}$$ Calculators use `10` as base for the log function `x` `=` `-4.0116` Compute using the calculator `x=-4.0116`
Quizzes
- Converting Between Logarithmic and Exponent Form 1
- Converting Between Logarithmic and Exponent Form 2
- Evaluating Logarithms 1
- Evaluating Logarithms 2
- Evaluating Logarithms 3
- Expanding Log Expressions
- Simplifying Log Expressions 1
- Simplifying Log Expressions 2
- Simplifying Log Expressions 3
- Change Of Base Formula
- Logarithmic Equations 1
- Logarithmic Equations 2
- Logarithmic Equations 3
- Solving Exponential Equations