Years
>
Year 10>
Algebraic Fractions>
Add and Subtract Algebraic Fractions with Unlike Denominators>
Add and Subtract Algebraic Fractions with Unlike Denominators 2Add and Subtract Algebraic Fractions with Unlike Denominators 2
Try VividMath Premium to unlock full access
Time limit: 0
Quiz summary
0 of 4 questions completed
Questions:
- 1
- 2
- 3
- 4
Information
–
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading...
You must sign in or sign up to start the quiz.
You have to finish following quiz, to start this quiz:
Loading...
- 1
- 2
- 3
- 4
- Answered
- Review
-
Question 1 of 4
1. Question
Perform the operation`4/(3n+6)+n/(n^2-4)`Hint
Help VideoCorrect
Excellent!
Incorrect
Adding and Subtracting Rational Expressions
`a/c +- b/c = (a+-b)/c`First, expand the denominators.`4/(3n+6)+n/(n^2-4)` `=` `4/(3(n+2))+n/((n+2)(n-2))` Next, identify the LCD.Since we have different denominators, the LCD would be `(3)(n+2)(n-2)`.Convert into same denominators using the LCD.$$\frac {4}{3n+6}+ \frac {n}{n^2-4}$$ $$=$$ $$\frac {4}{3(n+2)}+ \frac {n}{(n-2)(n+2)}$$ $$=$$ $$\frac {4 \times \color{red}{(n-2)}}{3(n+2) \times \color{red}{(n-2)}}+ \frac {n \times \color{red}{3}}{(n-2)(n+2) \times \color {red}{3}}$$ LCD is `3(n-2)(n+2)` `=` `(4(n-2))/(3(n-2)(n+2))+ (3n)/(3(n-2)(n+2))` Simplify `=` `(4(n-2)+3n)/(3(n-2)(n+2))` Combine numerators `=` `(4n-8+3n)/(3(n-2)(n+2))` Distribute `4` inside parenthesis `=` `(7n-8)/(3(n-2)(n+2))` Combine like terms `(7n-8)/(3(n-2)(n+2))` -
Question 2 of 4
2. Question
Perform the operation`5/(4x-8)-(3x)/(x+2)`Hint
Help VideoCorrect
Fantastic!
Incorrect
Adding and Subtracting Rational Expressions
`a/c +- b/c = (a+-b)/c`First, identify the LCD.Since we have different denominators, the LCD would be `(4x-8)(x+2)`.Convert into same denominators using the LCD.$$\frac {5}{4x-8}- \frac {3x}{x+2}$$ $$=$$ $$\frac {5 \times \color{red}{(x+2)}}{(4x-8) \times \color {red}{(x+2)}}- \frac {3x \times \color{red}{(4x-8)}}{(x+2) \times \color{red}{(4x-8)}}$$ LCD is `(4x-8)(x+2)` `=` `(5(x+2)-3x(4x-8))/((4x-8)(x+2))` Combine the numerators `=` `(5x+10-12x^2+24x)/((4x-8)(x+2))` Distribute the terms inside parenthesis `=` `(-12x^2+29x+10)/((4x-8)(x+2))` Combine like terms `(-12x^2+29x+10)/((4x-8)(x+2))` -
Question 3 of 4
3. Question
Perform the operation`(3m+1)/(m-1)^2-(m-2)/(m^2+4m-5)`Hint
Help VideoCorrect
Great Work!
Incorrect
Adding and Subtracting Rational Expressions
`a/c +- b/c = (a+-b)/c`First, expand the denominators starting with the first term.`(3m+1)/(m-1)^2-(m-2)/(m^2+4m-5)` `=` `(3m+1)/((m-1)(m-1))-(m-2)/(m^2+4m-5)` Since the denominator of the second term is in standard form `(``a``x^2+``b``x+``c``=0)` we can factorise using the cross method.`m^2+``4``m``-5``=0`To factorise, we need to find two numbers that add to `4` and multiply to `-5``5` and `-1` fit both conditions`5 – 1` `=` `4` `5 xx -1` `=` `-5` Read across to get the factors.`(m+5)(m-1)=0`Copy the factors of `m^2+4m-5`.`(3m+1)/(m-1)^2-(m-2)/(m^2+4m-5)` `=` `(3m+1)/((m-1)(m-1))-(m-2)/((m+5)(m-1))` Next, identify the LCD.`m-1` is common in the denominators, so the LCD would be `(m-1)(m-1)(m+5)`.Convert into same denominators using the LCD.$$=$$ $$\frac {(3m+1) \times \color{red}{(m+5)}}{(m-1)(m-1) \times \color{red}{(m+5)}}+ \frac {(m-2) \times \color{red}{(m-1)}}{(m+5)(m-1) \times \color{red}{(m-1)}}$$ LCD is `(m-1)(m-1)(m+5)` `=` `((3m+1)(m+5)+(m-2)(m-1))/((m-1)(m-1)(m+5))` Combine the numerators `=` `((3m^2+16m+5)+(m^2-3m+2))/((m-1)(m-1)(m+5))` Distribute the terms `=` `(4m^2+13m+7)/((m-1)(m-1)(m+5))` Combine like terms `(4m^2+13m+7)/((m-1)(m-1)(m+5))` -
Question 4 of 4
4. Question
Perform the operation`(a-3)/(a^2+6a+9)-(a+3)/(a-3)`Hint
Help VideoCorrect
Exceptional!
Incorrect
Adding and Subtracting Rational Expressions
`a/c +- b/c = (a+-b)/c`Since the denominator of the first term is in standard form `(``a``x^2+``b``x+``c``=0)` we can factorise using the cross method.`a^2+``6``a+``9``=0`To factorise, we need to find two numbers that add to `6` and multiply to `9``3` and `-3` fit both conditions`3 + 3` `=` `6` `3 xx 3` `=` `9` Read across to get the factors.`(a+3)(a+3)=0`Copy the factors to the original expression.`(a-3)/(a^2+6a+9)-(a+3)/(a-3)` `=` `(a-3)/((a+3)(a+3))-(a+3)/(a-3)` Next, identify the LCD.There is no common term in the denominators, so the LCD would be `(a+3)(a+3)(a-3)`.Convert into same denominators using the LCD.$$\frac {a-3}{a^2+6a+9}- \frac {a+3}{a-3}$$ $$=$$ $$\frac {(a-3) \times \color{red}{(a-3)}}{(a+3)(a+3) \times \color {red}{(a-3)}}- \frac {(a+3) \times \color{red}{(a+3)(a+3)}}{(a-3) \times \color{red}{(a+3)(a+3)}}$$ Multiply to come up with same denominators `=` `((a-3)(a-3)-(a+3)(a+3)(a+3))/((a+3)(a+3)(a-3))` `=` `((a^2-6a+9)-(a^3+9a^2+27a+27))/((a+3)(a+3)(a-3))` Distribute the factors `=` `(a^2-6a+9-a^3-9a^2-27a-27)/((a+3)(a+3)(a-3))` Distribute the negative sign `=` `(-a^3-8a^2-33a-18)/((a+3)(a+3)(a-3))` Combine like terms `(-a^3-8a^2-33a-18)/((a+3)(a+3)(a-3))`