Add and Subtract Mixed Numbers 3
Try VividMath Premium to unlock full access
Time limit: 0
Quiz summary
0 of 4 questions completed
Questions:
- 1
- 2
- 3
- 4
Information
–
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading...
You must sign in or sign up to start the quiz.
You have to finish following quiz, to start this quiz:
Loading...
- 1
- 2
- 3
- 4
- Answered
- Review
-
Question 1 of 4
1. Question
Add the following:`9 7/8+3 5/24`Hint
Help VideoCorrect
Well Done!
Incorrect
Transforming an Improper to Mixed Fraction
$$\frac{\color{#007DDC}{b}}{\color{#9a00c7}{c}}=\color{#00880A}{Q}\frac{\color{#e65021}{R}}{\color{#9a00c7}{c}}$$`(``b``-:``c``)=``Q` and `R` is the remainderA mixed number consists of a whole number and a fraction.First, add the whole numbers`9+3` `=` `12` Notice that the fractions have different denominators.Find the `LCD` of `8` and `24` so we can add the fractions.Multiples of `8`:$$8\;\;16\;\;\color{#004ec4}{24}\;\;32$$Multiples of `24`:$$\color{#004ec4}{24}\;\;48\;\;72$$The `LCD` of `8` and `24` is `24`Proceed with adding the fractions`7/8+5/24` `=` $$\frac{7\times\color{#CC0000}{3}}{8\times\color{#CC0000}{3}}+\frac{5}{24}$$ Multiply by `3` so that the denominator becomes `24` `=` $$\frac{21}{\color{#004ec4}{24}}+\frac{5}{\color{#004ec4}{24}}$$ `=` $$\frac{26}{24}$$ Change the improper fraction to a mixed fractionDivide the numerator by the denominatorArrange the numbers for long division`24` goes into `26` one time. So write `1` above the line.Multiply `1` to `24` and write the answer below `26`Subtract `24` from `26` and write the answer one line below
[add colors: `1`, `2`]Since `24` cannot go into `2` anymore, `2` is left as the Remainder and `1` is the QuotientSubstitute values into the given formula$$\frac{\color{#007DDC}{b}}{\color{#9a00c7}{c}}$$ `=` $$\color{#00880A}{Q}\frac{\color{#e65021}{R}}{\color{#9a00c7}{c}}$$ $$\frac{\color{#007DDC}{26}}{\color{#9a00c7}{24}}$$ `=` $$\color{#00880A}{1}\frac{\color{#e65021}{2}}{\color{#9a00c7}{24}}$$ `=` $$1\frac{2\div\color{#CC0000}{2}}{24\div\color{#CC0000}{2}}$$ Express in lowest terms `=` `1 1/12` Finally, combine the sum of the whole numbers and the sum of the fractions`9 7/8+3 5/24` `=` `12+1 1/12` `=` `13 1/12` `13 1/12` -
Question 2 of 4
2. Question
Subtract the following:`7-3 3/8`Hint
Help VideoCorrect
Great Work!
Incorrect
Transforming an Improper to Mixed Fraction
$$\frac{\color{#007DDC}{b}}{\color{#9a00c7}{c}}=\color{#00880A}{Q}\frac{\color{#e65021}{R}}{\color{#9a00c7}{c}}$$`(``b``-:``c``)=``Q` and `R` is the remainderTransforming a Fraction from Mixed to Improper
`=` $$\frac{(\color{#9a00c7}{c}\times\color{#00880A}{A})+\color{#007DDC}{b}}{\color{#9a00c7}{c}}$$ First, transform the mixed fractions to improper fractions$$7-\color{#00880A}{3} \frac{\color{#007DDC}{3}}{\color{#9a00c7}{8}}$$ `=` $$\frac{7}{1}-\frac{(\color{#9a00c7}{8}\times\color{#00880A}{3})+\color{#007DDC}{3}}{\color{#9a00c7}{8}}$$ `=` $$\frac{7}{1}-\frac{24+3}{8}$$ `=` $$\frac{7}{1}-\frac{27}{8}$$ Use cross method to subtract the fractions.Start by multiplying the two denominators. Use the product as a denominator for a new fraction.`7/1-27/8` `=` `☐/(1times8)` `=` `☐/8` To get the numerator, cross multiply the given addition problem and subtract the products.$$\frac{\color{#00880A}{7}}{\color{#9a00c7}{1}}-\frac{\color{#9a00c7}{27}}{\color{#00880A}{8}}$$ `=` $$\frac{(\color{#00880A}{7\times8})-(\color{#9a00c7}{1\times27})}{8}$$ `=` `(56-27)/8` `=` `29/8` Transform the fraction back to a mixed fractionStart by dividing the numerator by the denominatorArrange the numbers for long division`8` goes into `29` six times. So write `6` above the line.Multiply `3` to `8` and write the answer below `29`Subtract `24` from `29` and write the answer one line belowSince `8` cannot go into `5` anymore, `5` is left as the Remainder and `3` is the QuotientSubstitute values into the given formula$$\frac{\color{#007DDC}{b}}{\color{#9a00c7}{c}}$$ `=` $$\color{#00880A}{Q}\frac{\color{#e65021}{R}}{\color{#9a00c7}{c}}$$ $$\frac{\color{#007DDC}{29}}{\color{#9a00c7}{8}}$$ `=` $$\color{#00880A}{3}\frac{\color{#e65021}{5}}{\color{#9a00c7}{8}}$$ `3 5/8` -
Question 3 of 4
3. Question
Subtract the following:`5 1/4-3 2/3`Hint
Help VideoCorrect
Fantastic!
Incorrect
Transforming an Improper to Mixed Fraction
$$\frac{\color{#007DDC}{b}}{\color{#9a00c7}{c}}=\color{#00880A}{Q}\frac{\color{#e65021}{R}}{\color{#9a00c7}{c}}$$`(``b``-:``c``)=``Q` and `R` is the remainderTransforming a Fraction from Mixed to Improper
`=` $$\frac{(\color{#9a00c7}{c}\times\color{#00880A}{A})+\color{#007DDC}{b}}{\color{#9a00c7}{c}}$$ First, transform the mixed fractions to improper fractions$$\color{#00880A}{5}\frac{\color{#007DDC}{1}}{\color{#9a00c7}{4}}-\color{#00880A}{3} \frac{\color{#007DDC}{2}}{\color{#9a00c7}{3}}$$ `=` $$\frac{(\color{#9a00c7}{4}\times\color{#00880A}{5})+\color{#007DDC}{1}}{\color{#9a00c7}{4}}-\frac{(\color{#9a00c7}{3}\times\color{#00880A}{3})+\color{#007DDC}{2}}{\color{#9a00c7}{3}}$$ `=` $$\frac{20+1}{4}-\frac{9+2}{3}$$ `=` $$\frac{21}{4}-\frac{11}{3}$$ Notice that the fractions have different denominators.Find the `LCD` of `4` and `3` so we can subtract the fractions.Multiples of `4`:$$4\;\;8\;\;\color{#004ec4}{12}\;\;16\;\;20$$Multiples of `3`:$$3\;\;6\;\;9\;\;\color{#004ec4}{12}\;\;15\;\;18$$The `LCD` of `4` and `3` is `12`Next, we get the same denominator and subtract the fractions`21/4-11/3` `=` $$\frac{21\times\color{#CC0000}{3}}{4\times\color{#CC0000}{3}}-\frac{11\times\color{#CC0000}{4}}{3\times\color{#CC0000}{4}}$$ Multiply each fraction so that the denominator becomes `12` `=` $$\frac{63}{\color{#004ec4}{12}}-\frac{44}{\color{#004ec4}{12}}$$ `=` $$\frac{19}{12}$$ Transform the fraction back to a mixed fractionStart by dividing the numerator by the denominatorArrange the numbers for long division`12` goes into `19` once. So write `1` above the line.Multiply `1` to `12` and write the answer below `19`Subtract `12` from `19` and write the answer one line belowSince `12` cannot go into `7` anymore, `7` is left as the Remainder and `1` is the QuotientSubstitute values into the given formula$$\frac{\color{#007DDC}{b}}{\color{#9a00c7}{c}}$$ `=` $$\color{#00880A}{Q}\frac{\color{#e65021}{R}}{\color{#9a00c7}{c}}$$ $$\frac{\color{#007DDC}{19}}{\color{#9a00c7}{12}}$$ `=` $$\color{#00880A}{1}\frac{\color{#e65021}{7}}{\color{#9a00c7}{12}}$$ `1 7/12` -
Question 4 of 4
4. Question
Subtract the following:`9-2 7/10`Hint
Help VideoCorrect
Correct!
Incorrect
Transforming an Improper to Mixed Fraction
$$\frac{\color{#007DDC}{b}}{\color{#9a00c7}{c}}=\color{#00880A}{Q}\frac{\color{#e65021}{R}}{\color{#9a00c7}{c}}$$`(``b``-:``c``)=``Q` and `R` is the remainderTransforming a Fraction from Mixed to Improper
`=` $$\frac{(\color{#9a00c7}{c}\times\color{#00880A}{A})+\color{#007DDC}{b}}{\color{#9a00c7}{c}}$$ First, transform the mixed fractions to improper fractions$$9-\color{#00880A}{2} \frac{\color{#007DDC}{7}}{\color{#9a00c7}{10}}$$ `=` $$\frac{9}{1}-\frac{(\color{#9a00c7}{10}\times\color{#00880A}{2})+\color{#007DDC}{7}}{\color{#9a00c7}{10}}$$ `=` $$\frac{9}{1}-\frac{20+7}{10}$$ `=` $$\frac{9}{1}-\frac{27}{10}$$ Use cross method to subtract the fractions.Start by multiplying the two denominators. Use the product as a denominator for a new fraction.`9/1-27/10` `=` `☐/(1times10)` `=` `☐/10` To get the numerator, cross multiply the given addition problem and subtract the products.$$\frac{\color{#00880A}{9}}{\color{#9a00c7}{1}}-\frac{\color{#9a00c7}{27}}{\color{#00880A}{10}}$$ `=` $$\frac{(\color{#00880A}{9\times10})-(\color{#9a00c7}{1\times27})}{10}$$ `=` `(90-27)/10` `=` `63/10` Transform the fraction back to a mixed fractionStart by dividing the numerator by the denominatorArrange the numbers for long division`10` goes into `63` six times. So write `6` above the line.Multiply `6` to `10` and write the answer below `63`Subtract `60` from `63` and write the answer one line belowSince `10` cannot go into `3` anymore, `3` is left as the Remainder and `6` is the QuotientSubstitute values into the given formula$$\frac{\color{#007DDC}{b}}{\color{#9a00c7}{c}}$$ `=` $$\color{#00880A}{Q}\frac{\color{#e65021}{R}}{\color{#9a00c7}{c}}$$ $$\frac{\color{#007DDC}{63}}{\color{#9a00c7}{10}}$$ `=` $$\color{#00880A}{6}\frac{\color{#e65021}{3}}{\color{#9a00c7}{10}}$$ `6 3/10`
Quizzes
- Shaded Fractions 1
- Shaded Fractions 2
- Equivalent Fractions 1
- Equivalent Fractions 2
- Equivalent Fractions 3
- Equivalent Fractions 4
- Simplify Fractions 1
- Simplify Fractions 2
- Simplify Fractions 3
- Find the Lowest Common Denominator
- Comparing Fractions 1
- Comparing Fractions 2
- Comparing Fractions 3
- Mixed and Improper Fractions 1
- Mixed and Improper Fractions 2
- Mixed and Improper Fractions 3
- Add and Subtract Fractions 1
- Add and Subtract Fractions 2
- Add and Subtract Fractions 3
- Add and Subtract Fractions 4
- Multiply and Divide Fractions 1
- Multiply and Divide Fractions 2
- Multiply and Divide Fractions 3
- Add and Subtract Mixed Numbers 1
- Add and Subtract Mixed Numbers 2
- Add and Subtract Mixed Numbers 3
- Multiply and Divide Mixed Numbers 1
- Multiply and Divide Mixed Numbers 2
- Multiply and Divide Mixed Numbers 3
- Multiply and Divide Mixed Numbers 4
- Fraction Word Problems: Addition and Subtraction 1
- Fraction Word Problems: Addition and Subtraction 2
- Fraction Word Problems: Addition and Subtraction 3
- Fraction Word Problems: Addition and Subtraction 4
- Fraction Word Problems: Multiplication and Division
- Find the Fraction of a Quantity
- Find the Quantity of a Quantity 1
- Find the Quantity of a Quantity 2
- Find the Fraction of a Quantity: Word Problems 1
- Find the Fraction of a Quantity: Word Problems 2
- Find the Fraction of a Quantity: Word Problems 3
- Find the Fraction of a Quantity: Word Problems 4
- Find the Quantity of a Quantity: Word Problems
- Order of Operations Involving Fractions 1
- Order of Operations Involving Fractions 2