Years
>
Year 12>
Permutations and Combinations>
Combinations with Probability>
Combinations with ProbabilityCombinations with Probability
Try VividMath Premium to unlock full access
Time limit: 0
Quiz summary
0 of 5 questions completed
Questions:
- 1
- 2
- 3
- 4
- 5
Information
–
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading...
You must sign in or sign up to start the quiz.
You have to finish following quiz, to start this quiz:
Loading...
- 1
- 2
- 3
- 4
- 5
- Answered
- Review
-
Question 1 of 5
1. Question
What is the probability of winning the lotto where there are `40` numbered balls and you are asked to pick `6` numbers, if you purchased only `1` entry?Hint
Help VideoCorrect
Well Done!
Incorrect
Combination Formula
$$ _\color{purple}{n}C_{\color{green}{r}}=\frac{\color{purple}{n}!}{(\color{purple}{n}-\color{green}{r})!\color{green}{r}!} $$Probability Formula
$$ \mathsf{P=\frac{\color{#e65021}{favourable\:outcomes}}{\color{#007DDC}{total\:outcomes}}} $$Use the combinations formula to find the number of ways an item can be chosen `(r)` from the total number of items `(n)`.Remember that order is not important in Combinations.Find the different ways to draw `6` numbers `(r)` out of `40` total numbers `(n)``r=6``n=40`$$_\color{purple}{n}C_{\color{green}{r}}$$ `=` $$ \frac{\color{purple}{n}!}{(\color{purple}{n}-\color{green}{r})!\color{green}{r}!} $$ Combination Formula $$_\color{purple}{40}C_{\color{green}{6}}$$ `=` $$\frac{\color{purple}{40}!}{(\color{purple}{40}-\color{green}{6})!\color{green}{6}!} $$ Substitute the values of `r` and `n` `=` $$ \frac{40!}{34! 6!}$$ `=` `3 838 380` Use the calculator’s factorial function for large numbers Now, find the probability that your `6` numbers will be chosen for the lottofavourable outcomes`=``1` (you have only purchased `1` entry)total outcomes`=``3 838 380` (total `6`-number combinations from `40` numbers)$$ \mathsf{P} $$ `=` $$\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$ Probability Formula `=` $$\frac{\color{#e65021}{1}}{\color{#007DDC}{3\;838\;380}}$$ Substitute values `1/(3 838 380)` -
Question 2 of 5
2. Question
What is the probability of winning the lotto where there are `40` numbered balls and you are asked to pick `6` numbers, if you purchased `190` entries?Hint
Help VideoCorrect
Correct!
Incorrect
Combination Formula
$$ _\color{purple}{n}C_{\color{green}{r}}=\frac{\color{purple}{n}!}{(\color{purple}{n}-\color{green}{r})!\color{green}{r}!} $$Probability Formula
$$ \mathsf{P=\frac{\color{#e65021}{favourable\:outcomes}}{\color{#007DDC}{total\:outcomes}}} $$Use the combinations formula to find the number of ways an item can be chosen `(r)` from the total number of items `(n)`.Remember that order is not important in Combinations.Find the different ways to draw `6` numbers `(r)` out of `40` total numbers `(n)``r=6``n=40`$$_\color{purple}{n}C_{\color{green}{r}}$$ `=` $$ \frac{\color{purple}{n}!}{(\color{purple}{n}-\color{green}{r})!\color{green}{r}!} $$ Combination Formula $$_\color{purple}{40}C_{\color{green}{6}}$$ `=` $$\frac{\color{purple}{40}!}{(\color{purple}{40}-\color{green}{6})!\color{green}{6}!} $$ Substitute the values of `r` and `n` `=` $$ \frac{40!}{34! 6!}$$ `=` `3 838 380` Use the calculator’s factorial function for large numbers Now, find the probability that one of your entries will be chosen for the lottofavourable outcomes`=``190` (`190` entries)total outcomes`=``3 838 380` (total `6`-number combinations from `40` numbers)$$ \mathsf{P} $$ `=` $$\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$ Probability Formula `=` $$\frac{\color{#e65021}{190}}{\color{#007DDC}{3\;838\;380}}$$ Substitute values `=` $$\frac{1}{20\;202}$$ `1/(20 202)` -
Question 3 of 5
3. Question
In how many ways can `4` Jacks be chosen from a standard deck of `52` cards?Hint
Help VideoCorrect
Fantastic!
Incorrect
Combination Formula
$$ _\color{purple}{n}C_{\color{green}{r}}=\frac{\color{purple}{n}!}{(\color{purple}{n}-\color{green}{r})!\color{green}{r}!} $$Probability Formula
$$ \mathsf{P=\frac{\color{#e65021}{favourable\:outcomes}}{\color{#007DDC}{total\:outcomes}}} $$Use the combinations formula to find the number of ways an item can be chosen `(r)` from the total number of items `(n)`.Remember that order is not important in Combinations.First, find the different ways that `4` cards `(r)` can be chosen from a standard deck of `52` cards `(n)``r=4``n=52`$$_\color{purple}{n}C_{\color{green}{r}}$$ `=` $$ \frac{\color{purple}{n}!}{(\color{purple}{n}-\color{green}{r})!\color{green}{r}!} $$ Combination Formula $$_\color{purple}{52}C_{\color{green}{4}}$$ `=` $$\frac{\color{purple}{52}!}{(\color{purple}{52}-\color{green}{4})!\color{green}{4}!} $$ Substitute the values of `r` and `n` `=` $$ \frac{52!}{48! 4!} $$ `=` `270 725` Use the calculator’s factorial function for large numbers Next, find the different ways that `4` Jacks `(r)` can be chosen from `4` Jacks `(n)` in the deck`r=4``n=4`$$_\color{purple}{n}C_{\color{green}{r}}$$ `=` $$ \frac{\color{purple}{n}!}{(\color{purple}{n}-\color{green}{r})!\color{green}{r}!} $$ Combination Formula $$_\color{purple}{4}C_{\color{green}{4}}$$ `=` $$\frac{\color{purple}{4}!}{(\color{purple}{4}-\color{green}{4})!\color{green}{4}!} $$ Substitute the values of `r` and `n` `=` $$ \frac{4!}{0! 4!} $$ `=` $$ \frac{4!}{4!} $$ `0! =1` `=` `1` Now, find the probability of choosing `4` Jacks from a standard deck of cardsfavourable outcomes`=``1` (there is only `1` combination of Jacks)total outcomes`=``270 725` (total ways `4` cards can be drawn)$$ \mathsf{P} $$ `=` $$\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$ Probability Formula `=` $$\frac{\color{#e65021}{1}}{\color{#007DDC}{270\;725}}$$ Substitute values `1/(270 725)` -
Question 4 of 5
4. Question
What is the probability of drawing `4` Kings and `1` other card from a standard deck of `52` cards?Hint
Help VideoCorrect
Nice Job!
Incorrect
Combination Formula
$$ _\color{purple}{n}C_{\color{green}{r}}=\frac{\color{purple}{n}!}{(\color{purple}{n}-\color{green}{r})!\color{green}{r}!} $$Probability Formula
$$ \mathsf{P=\frac{\color{#e65021}{favourable\:outcomes}}{\color{#007DDC}{total\:outcomes}}} $$Use the combinations formula to find the number of ways an item can be chosen `(r)` from the total number of items `(n)`.Remember that order is not important in Combinations.First, find the number of ways that `4` King cards can be drawn. There are only `4` King cards available, which means:`r=4``n=4`$$_\color{purple}{n}C_{\color{green}{r}}$$ `=` $$ \frac{\color{purple}{n}!}{(\color{purple}{n}-\color{green}{r})!\color{green}{r}!} $$ Combination Formula $$_\color{purple}{4}C_{\color{green}{4}}$$ `=` $$\frac{\color{purple}{4}!}{(\color{purple}{4}-\color{green}{4})!\color{green}{4}!} $$ Substitute the values of `r` and `n` `=` $$ \frac{4!}{0! 4!}$$ `=` $$ \frac{4\cdot3\cdot2\cdot1}{4\cdot3\cdot2\cdot1}$$ `0! =1` `=` $$1$$ Keeping in mind that `4` cards have already been drawn, find the different ways that `1` other card `(r)` can be chosen from a total of `48` remaining cards `(n)``r=1``n=48`$$_\color{purple}{n}C_{\color{green}{r}}$$ `=` $$ \frac{\color{purple}{n}!}{(\color{purple}{n}-\color{green}{r})!\color{green}{r}!} $$ Combination Formula $$_\color{purple}{48}C_{\color{green}{1}}$$ `=` $$\frac{\color{purple}{48}!}{(\color{purple}{48}-\color{green}{1})!\color{green}{1}!} $$ Substitute the values of `r` and `n` `=` $$ \frac{48!}{47! 1!} $$ `=` $$ \frac{48\cdot47!}{47!} $$ `=` `48` `(47!)/(47!)` cancels out Multiply the two solved combinationsNumber of ways the `4` King cards can be dealt`=1`Number of ways one other card can be dealt`=48``1*48` `=` `48` Hence, there are `48` ways of drawing `4` Kings and one other card from a standard deck of `52` cards. This is the favourable outcome.Now, find the number of ways that `5` cards can be drawn from a total of `52` cards`r=5``n=52`$$_\color{purple}{n}C_{\color{green}{r}}$$ `=` $$ \frac{\color{purple}{n}!}{(\color{purple}{n}-\color{green}{r})!\color{green}{r}!} $$ Combination Formula $$_\color{purple}{52}C_{\color{green}{5}}$$ `=` $$\frac{\color{purple}{52}!}{(\color{purple}{52}-\color{green}{5})!\color{green}{5}!} $$ Substitute the values of `r` and `n` `=` $$ \frac{52!}{47! 5!}$$ `=` `2 598 960` This is the total outcomeFinally, find the probability of drawing `4` Kings and `1` other card from a standard deckfavourable outcomes`=``48` (`4` Kings and `1` other card)total outcomes`=``2 598 960` (total ways of drawing `5` cards)$$ \mathsf{P} $$ `=` $$\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$ Probability Formula `=` $$\frac{\color{#e65021}{48}}{\color{#007DDC}{2\;598\;960}}$$ Substitute values `=` $$\frac{1}{54\;145}$$ `1/(54 145)` -
Question 5 of 5
5. Question
What is the probability of drawing `3` Queens and `2` other cards from a standard deck of `52` cards?Hint
Help VideoCorrect
Great Work!
Incorrect
Combination Formula
$$ _\color{purple}{n}C_{\color{green}{r}}=\frac{\color{purple}{n}!}{(\color{purple}{n}-\color{green}{r})!\color{green}{r}!} $$Probability Formula
$$ \mathsf{P=\frac{\color{#e65021}{favourable\:outcomes}}{\color{#007DDC}{total\:outcomes}}} $$Use the combinations formula to find the number of ways an item can be chosen `(r)` from the total number of items `(n)`.Remember that order is not important in Combinations.First, find the ways that the `3` Queens can be dealt. There are `4` Queens available, which means:`r=3``n=4`$$_\color{purple}{n}C_{\color{green}{r}}$$ `=` $$ \frac{\color{purple}{n}!}{(\color{purple}{n}-\color{green}{r})!\color{green}{r}!} $$ Combination Formula $$_\color{purple}{4}C_{\color{green}{3}}$$ `=` $$\frac{\color{purple}{4}!}{(\color{purple}{4}-\color{green}{3})!\color{green}{3}!} $$ Substitute the values of `r` and `n` `=` $$ \frac{4!}{1! 3!}$$ `=` $$ \frac{4\color{#CC0000}{\cdot3\cdot2\cdot1}}{\color{#CC0000}{3\cdot2\cdot1}}$$ `0! =1` `=` $$4$$ Keeping in mind that the `4` Queens cannot be chosen again, find the different ways that `2` other cards `(r)` can be chosen from a total of `48` remaining cards `(n)``r=2``n=48`$$_\color{purple}{n}C_{\color{green}{r}}$$ `=` $$ \frac{\color{purple}{n}!}{(\color{purple}{n}-\color{green}{r})!\color{green}{r}!} $$ Combination Formula $$_\color{purple}{48}C_{\color{green}{2}}$$ `=` $$\frac{\color{purple}{48}!}{(\color{purple}{48}-\color{green}{2})!\color{green}{2}!} $$ Substitute the values of `r` and `n` `=` $$ \frac{48!}{46! 2!} $$ `=` $$ \frac{48\cdot47\cdot46!}{46!\cdot2\cdot1} $$ `=` `2256/2` `(46!)/(46!)` cancels out `=` `1128` Multiply the two solved combinationsNumber of ways the `3` Queens can be dealt`=4`Number of ways two other cards can be dealt`=1128``4*1128` `=` `4512` Hence, there are `4512` ways of dealing `3` Queens and two other cards from a standard deck of `52` cards. This is the favourable outcomeNow, find the number of ways that `5` cards can be drawn from a total of `52` cards`r=5``n=52`$$_\color{purple}{n}C_{\color{green}{r}}$$ `=` $$ \frac{\color{purple}{n}!}{(\color{purple}{n}-\color{green}{r})!\color{green}{r}!} $$ Combination Formula $$_\color{purple}{52}C_{\color{green}{5}}$$ `=` $$\frac{\color{purple}{52}!}{(\color{purple}{52}-\color{green}{5})!\color{green}{5}!} $$ Substitute the values of `r` and `n` `=` $$ \frac{52!}{47! 5!}$$ `=` `2 598 960` This is the total outcomeFinally, find the probability of drawing `3` Queens and `2` other cards from a standard deckfavourable outcomes`=``4512` (`3` Queens and `2` other cards)total outcomes`=``2 598 960` (total ways of drawing `5` cards)$$ \mathsf{P} $$ `=` $$\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$ Probability Formula `=` $$\frac{\color{#e65021}{4512}}{\color{#007DDC}{2\;598\;960}}$$ Substitute values `=` $$\frac{1}{576}$$ `1/576`
Quizzes
- Factorial Notation
- Fundamental Counting Principle 1
- Fundamental Counting Principle 2
- Fundamental Counting Principle 3
- Combinations 1
- Combinations 2
- Combinations with Restrictions 1
- Combinations with Restrictions 2
- Combinations with Probability
- Basic Permutations 1
- Basic Permutations 2
- Basic Permutations 3
- Permutation Problems 1
- Permutation Problems 2
- Permutations with Repetitions 1
- Permutations with Repetitions 2
- Permutations with Restrictions 1
- Permutations with Restrictions 2
- Permutations with Restrictions 3
- Permutations with Restrictions 4