Arithmetic Sequences (Sum)
Try VividMath Premium to unlock full access
Time limit: 0
Quiz summary
0 of 5 questions completed
Questions:
- 1
- 2
- 3
- 4
- 5
Information
–
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading...
You must sign in or sign up to start the quiz.
You have to finish following quiz, to start this quiz:
Loading...
- 1
- 2
- 3
- 4
- 5
- Answered
- Review
-
Question 1 of 5
1. Question
Find the sum of the sequence`6+11+16+…+236`- `S_n=` (5687)
Hint
Help VideoCorrect
Great Work!
Incorrect
Sum of an Arithmetic Sequence
$$S_{\color{#9a00c7}{n}}=\frac{\color{#9a00c7}{n}}{2}[\color{#e65021}{a}+\color{#00880A}{l}]$$Common Difference Formula
$$d=U_2-U_1=U_3-U_2$$General Rule of an Arithmetic Sequence
$$U_{\color{#9a00c7}{n}}=\color{#e65021}{a}+[(\color{#9a00c7}{n}-1)\color{#00880A}{d}]$$First, solve for the value of `d`.$$\color{#00880A}{d}$$ `=` $$U_2-U_1$$ `=` $$11-6$$ Substitute the first and second term `=` `5` Next, substitute the known values to the general rule and solve for `n``\text(Nth term)``[U_n]` `=` `236` `\text(First term)``[a]` `=` `6` `\text(Common Difference)``[d]` `=` `5` $$U_{\color{#9a00c7}{n}}$$ `=` $$\color{#e65021}{a}+[(\color{#9a00c7}{n}-1)\color{#00880A}{d}]$$ $$236$$ `=` $$\color{#e65021}{6}+[(\color{#9a00c7}{n}-1)\color{#00880A}{5}]$$ Substitute known values `236` `=` `6+5n-5` Distribute `236` `-1` `=` `1+5n` `-1` Subtract `1` from both sides `235``divide5` `=` `5n``divide5` Divide both sides by `5` `47` `=` `n` `n` `=` `47` Finally, substitute the known values to the sum formula`\text(Number of terms) [n]` `=` `47` `\text(First Term) [a]` `=` `6` `\text(Last Term) [l]` `=` `236` $$S_{\color{#9a00c7}{n}}$$ `=` $$\frac{\color{#9a00c7}{n}}{2}[\color{#e65021}{a}+\color{#00880A}{l}]$$ $$S_{\color{#9a00c7}{47}}$$ `=` $$\frac{\color{#9a00c7}{47}}{2}[\color{#e65021}{6}+\color{#00880A}{236}]$$ Substitute known values `=` $$\frac{47}{2}[242]$$ Evaluate `=` $$\frac{11374}{2}$$ `=` `5687` `S_n=5687` -
Question 2 of 5
2. Question
Find the sum of the first `20` terms given that:`U_1=8``U_18=76`- `S_20=` (920)
Hint
Help VideoCorrect
Correct!
Incorrect
Sum of an Arithmetic Sequence
$$S_{\color{#9a00c7}{n}}=\frac{\color{#9a00c7}{n}}{2}[2\color{#e65021}{a}+(\color{#9a00c7}{n}-1)\color{#00880A}{d}]$$General Rule of an Arithmetic Sequence
$$U_{\color{#9a00c7}{n}}=\color{#e65021}{a}+[(\color{#9a00c7}{n}-1)\color{#00880A}{d}]$$First, substitute the known values to the general rule and solve for `d``\text(18th term)``[U_18]` `=` `76` `\text(First term)``[a]` `=` `8` $$U_{\color{#9a00c7}{n}}$$ `=` $$\color{#e65021}{a}+[(\color{#9a00c7}{n}-1)\color{#00880A}{d}]$$ $$U_{\color{#9a00c7}{18}}$$ `=` $$\color{#e65021}{8}+[(\color{#9a00c7}{18}-1)\color{#00880A}{d}]$$ Substitute known values `76` `-8` `=` `8+17d` `-8` Subtract `8` from both sides `68``divide17` `=` `17d``divide17` Divide both sides by `17` `4` `=` `d` `d` `=` `4` Finally, substitute the known values to the sum formula`\text(Number of terms) [n]` `=` `20` `\text(First Term) [a]` `=` `8` `\text(Common Difference) [d]` `=` `4` $$S_{\color{#9a00c7}{n}}$$ `=` $$\frac{\color{#9a00c7}{n}}{2}[2\color{#e65021}{a}+(\color{#9a00c7}{n}-1)\color{#00880A}{d}]$$ $$S_{\color{#9a00c7}{20}}$$ `=` $$\frac{\color{#9a00c7}{20}}{2}[2\cdot\color{#e65021}{8}+(\color{#9a00c7}{20}-1)\color{#00880A}{4}]$$ Substitute known values `=` $$10[16+(19\cdot4)]$$ Evaluate `=` $$10(16+76)$$ `=` `10*92` `=` `920` `S_20=920` -
Question 3 of 5
3. Question
Find the sequence given that:`S_10=145``S_20=590`Hint
Help VideoCorrect
Keep Going!
Incorrect
Sum of an Arithmetic Sequence
$$S_{\color{#9a00c7}{n}}=\frac{\color{#9a00c7}{n}}{2}[2\color{#e65021}{a}+(\color{#9a00c7}{n}-1)\color{#00880A}{d}]$$General Rule of an Arithmetic Sequence
$$U_{\color{#9a00c7}{n}}=\color{#e65021}{a}+[(\color{#9a00c7}{n}-1)\color{#00880A}{d}]$$First, use the sum formula to both sums and transform them into general rule form`S_10`$$S_{\color{#9a00c7}{n}}$$ `=` $$\frac{\color{#9a00c7}{n}}{2}[2\color{#e65021}{a}+(\color{#9a00c7}{n}-1)\color{#00880A}{d}]$$ $$S_{\color{#9a00c7}{10}}$$ `=` $$\frac{\color{#9a00c7}{10}}{2}[2\color{#e65021}{a}+(\color{#9a00c7}{10}-1)\color{#00880A}{d}]$$ Substitute known values `145``divide5` `=` `5(2a+9d)``divide5` Divide both side by `5` `29` `=` `2a+9d` `S_20`$$S_{\color{#9a00c7}{20}}$$ `=` $$\frac{\color{#9a00c7}{20}}{2}[2\color{#e65021}{a}+(\color{#9a00c7}{20}-1)\color{#00880A}{d}]$$ Substitute known values `590``divide10` `=` `10(2a+19d)``divide10` Divide both side by `10` `59` `=` `2a+19d` Next, solve for the value of `d` by subtracting the `S_10`’s general rule form from the `S_20`’s general rule form`59``-``29` `=` `(``2a+19d``)-(``2a+9d``)` `30``divide10` `=` `10d``divide10` Divide both sides by `10` `3` `=` `d` `d` `=` `3` Next, substitute `d` to one of the general rule forms to solve for `a``29` `=` `2a+9``d` `29` `=` `2a+9(``3``)` Substitute `d=5` `29` `-27` `=` `2a+27` `-27` Subtract `27` from both sides `2``divide2` `=` `2a``divide2` Divide both sides by `2` `1` `=` `a` `a` `=` `1` Finally, start with `a=1` and keep adding `d=3` to its value to get the sequence`U_1` `=` `1` `U_2` `=` `1+``3` `=` `4` `U_3` `=` `4+``3` `=` `7` `U_4` `=` `7+``3` `=` `10` `1+4+7+10…` `1+4+7+10…` -
Question 4 of 5
4. Question
Given that `S_n=301`, find the value of n`2+5+8…`- `n=` (14)
Hint
Help VideoCorrect
Fantastic!
Incorrect
Sum of an Arithmetic Sequence
$$S_{\color{#9a00c7}{n}}=\frac{\color{#9a00c7}{n}}{2}[2\color{#e65021}{a}+(\color{#9a00c7}{n}-1)\color{#00880A}{d}]$$Common Difference Formula
$$d=U_2-U_1=U_3-U_2$$Quadratic Formula
$$n=\frac{-b\pm \sqrt{b^2-4ac}}{2a}$$First, solve for the value of `d`.$$\color{#00880A}{d}$$ `=` $$U_2-U_1$$ `=` $$5-2$$ Substitute the first and second term `=` `3` Next, substitute the known values to the sum formula`\text(Sum of terms) [S_n]` `=` `301` `\text(First term) [a]` `=` `2` `\text(Common difference) [d]` `=` `3` $$S_{\color{#9a00c7}{n}}$$ `=` $$\frac{\color{#9a00c7}{n}}{2}[2\color{#e65021}{a}+(\color{#9a00c7}{n}-1)\color{#00880A}{d}]$$ $$301$$ `=` $$\frac{\color{#9a00c7}{n}}{2}[2\cdot\color{#e65021}{2}+(\color{#9a00c7}{n}-1)\color{#00880A}{3}]$$ Substitute known values `301``times2` `=` `n/2 [4+3n-3]``times2` Multiply both sides by `2` `602` `=` `n[1+3n]` `602` `=` `3n^2+n` Distribute `602` `-602` `=` `3n^2+n` `-602` Subtract `602` from both sides `0` `=` `3n^2+n-602` `3n^2+n-602` `=` `0` Finally, use the quadratic formula to solve for `n``a` `=` `3` `b` `=` `1` `c` `=` `-602` $$n$$ `=` $$\frac{-b\pm \sqrt{b^2-4ac}}{2a}$$ `=` $$\frac{-1\pm \sqrt{(-1)^2-4\cdot3\cdot(-603)}}{2(3)}$$ Substitute known values `=` $$\frac{-1\pm \sqrt{1+7224}}{6}$$ Evaluate `=` $$\frac{-1\pm \sqrt{7225}}{6}$$ `=` $$\frac{-1\pm 85}{6}$$ Solve for the two values of `n`.`n` `=` $$\frac{-1+85}{6}$$ `=` $$\frac{84}{6}$$ `=` `14` `n` `=` $$\frac{-1-85}{6}$$ `=` $$\frac{-86}{6}$$ `=` $$-14.\overline{33}$$ Since the negative value has a repeating decimal, it is considered irrational.Hence, the value of `n` is `14`.`n=14` -
Question 5 of 5
5. Question
Given that `S_n=39`, find the value of the last term`1 1/2+1 3/4+2+2 1/4…`Hint
Help VideoCorrect
Excellent!
Incorrect
Sum of an Arithmetic Sequence
$$S_{\color{#9a00c7}{n}}=\frac{\color{#9a00c7}{n}}{2}[\color{#e65021}{a}+\color{#00880A}{l}]$$Common Difference Formula
$$d=U_2-U_1=U_3-U_2$$General Rule of an Arithmetic Sequence
$$U_{\color{#9a00c7}{n}}=\color{#e65021}{a}+[(\color{#9a00c7}{n}-1)\color{#00880A}{d}]$$First, solve for the value of `d`.$$\color{#00880A}{d}$$ `=` $$U_2-U_1$$ `=` `1 3/4-1 1/2` Substitute the first and second term `=` `1/4` Next, substitute the known values to the sum formula`\text(Sum of terms) [S_n]` `=` `39` `\text(First term) [a]` `=` `1 1/2` `\text(Common difference) [d]` `=` `1/4` $$S_{\color{#9a00c7}{n}}$$ `=` $$\frac{\color{#9a00c7}{n}}{2}[2\color{#e65021}{a}+(\color{#9a00c7}{n}-1)\color{#00880A}{d}]$$ $$39$$ `=` $$\frac{\color{#9a00c7}{n}}{2}\left[2\cdot\color{#e65021}{1\frac{1}{2}}+(\color{#9a00c7}{n}-1)\color{#00880A}{\frac{1}{4}}\right]$$ Substitute known values `39``times2` `=` `n/2 [3+n/4-1/4]``times2` Multiply both sides by `2` `78` `=` `n[11/4+n/4]` `78` `=` `(11n)/4+(n^2)/4` Distribute `78``times4` `=` `((11n)/4+(n^2)/4)``times4` Multiply both sides by `4` `312` `-312` `=` `11n+n^2` `-312` Subtract `312` from both sides `0` `=` `n^2+11n-312` `n^2+11n-312` `=` `0` Since the equation is in standard form `(ax^2+bx+c=0)` we can factorise using the cross method.`n^2` `+11``n` `-312``=0`To factorise, we need to find two numbers that add to `11` and multiply to `-312``24` and `-13` fit both conditions`24 + (-13)` `=` `11` `(24) xx (-13)` `=` `-312` Read across to get the factors.`(n+24)(n-13)`Since we need a positive value for `n`, we need to use `n=13`.Finally, substitute the known values to the general rule`\text(Number of terms)``[n]` `=` `13` `\text(First term)``[a]` `=` `1 1/2` `\text(Common Difference)``[d]` `=` `1/4` $$U_{\color{#9a00c7}{n}}$$ `=` $$\color{#e65021}{a}+[(\color{#9a00c7}{n}-1)\color{#00880A}{d}]$$ $$U_{\color{#9a00c7}{13}}$$ `=` $$\color{#e65021}{1\frac{1}{2}}+[(\color{#9a00c7}{13}-1)\color{#00880A}{\frac{1}{4}}]$$ Substitute known values `=` `1 1/2+12/4` Evaluate `=` `4 1/2` `\text(Last term)=4 1/2`