Years
>
Year 9>
Probability>
Dependent Events (Conditional Probability)>
Dependent Events (Conditional Probability)Dependent Events (Conditional Probability)
Try VividMath Premium to unlock full access
Time limit: 0
Quiz summary
0 of 7 questions completed
Questions:
- 1
- 2
- 3
- 4
- 5
- 6
- 7
Information
–
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading...
You must sign in or sign up to start the quiz.
You have to finish following quiz, to start this quiz:
Loading...
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- Answered
- Review
-
Question 1 of 7
1. Question
A jar contains `7` orange and `6` green marbles. Find the probability of getting an orange, a green and another orange marble without replacement.Write fractions in the format “a/b”- (21/143, 252/1716)
Hint
Help VideoCorrect
Excellent!
Incorrect
Probability Formula
$$\mathsf{P(E)}=\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$Product Rule
$$\mathsf{P(A\:and\:B)}=\mathsf{P(A)}\times\mathsf{P(B)}$$Find the probability of getting an Orange marble.favourable outcomes`=``7` (`7` Orange marbles)total outcomes`=``13` (`13` total marbles)$$ \mathsf{P(O_1)} $$ `=` $$\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$ Probability Formula `=` $$\frac{\color{#e65021}{7}}{\color{#007DDC}{13}}$$ Substitute values Find the probability of getting a Green marble. Remember to reduce the total outcome.favourable outcomes`=``6` (`6` Green marbles)total outcomes`=``12` (`1` marble was already picked)$$ \mathsf{P(G)} $$ `=` $$\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$ Probability Formula `=` $$\frac{\color{#e65021}{6}}{\color{#007DDC}{12}}$$ Substitute values Find the probability of getting another Orange marble. Remember to reduce the number of Orange marbles and the total outcome.favourable outcomes`=``6` (`1` Orange marble was already picked)total outcomes`=``6` (`2` marbles were already picked)$$\mathsf{P(O_2)}$$ `=` $$\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$ Probability Formula `=` $$\frac{\color{#e65021}{6}}{\color{#007DDC}{11}}$$ Substitute values Now, substitute the probabilities into the product rule$$\mathsf{P(O_1)}$$ `=` $$\frac{7}{13}$$ $$\mathsf{P(G)}$$ `=` $$\frac{6}{12}$$ $$\mathsf{P(O_2)}$$ `=` $$\frac{6}{11}$$ $$\mathsf{P(Orange\:and\:Green\:and\:Orange)}$$ `=` $$\mathsf{P(O_1)}\times\mathsf{P(G)}\times\mathsf{P(O_2)}$$ Product Rule `=` $$\frac{7}{13}\times\frac{6}{12}\times\frac{6}{11}$$ Substitute values `=` $$\frac{252}{1716}$$ `=` $$\frac{21}{143}$$ Simplify `21/143` -
Question 2 of 7
2. Question
Find the probability of drawing a Spade card then a Diamond card from a standard deck of cards without replacement.Write fractions in the format “a/b”- (13/204, 169/2652)
Hint
Help VideoCorrect
Well Done!
Incorrect
Probability Formula
$$\mathsf{P(E)}=\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$Product Rule
$$\mathsf{P(A\:and\:B)}=\mathsf{P(A)}\times\mathsf{P(B)}$$Find the probability of drawing a Spade card.favourable outcomes`=``13` (`13` Spade cards)total outcomes`=``52` (`52` total cards)$$ \mathsf{P(Spade)} $$ `=` $$\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$ Probability Formula `=` $$\frac{\color{#e65021}{13}}{\color{#007DDC}{52}}$$ Substitute values Find the probability of drawing a Diamond card. Remember to reduce the total outcome.favourable outcomes`=``13` (`13` Diamond cards)total outcomes`=``51` (`1` card was already drawn)$$ \mathsf{P(Diamond)} $$ `=` $$\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$ Probability Formula `=` $$\frac{\color{#e65021}{13}}{\color{#007DDC}{51}}$$ Substitute values Now, substitute the probabilities into the product rule$$\mathsf{P(Spade)}$$ `=` $$\frac{13}{52}$$ $$\mathsf{P(Diamond)}$$ `=` $$\frac{13}{51}$$ $$\mathsf{P(Spade\:and\:Diamond)}$$ `=` $$\mathsf{P(Spade)}\times\mathsf{P(Diamond)}$$ Product Rule `=` $$\frac{13}{52}\times\frac{13}{51}$$ Substitute values `=` $$\frac{169}{2652}$$ `=` $$\frac{13}{204}$$ Simplify `13/204` -
Question 3 of 7
3. Question
Find the probability of drawing `2` Heart cards from a standard deck of cards without replacement.Write fractions in the format “a/b”- (1/17, 156/2652)
Hint
Help VideoCorrect
Nice Job!
Incorrect
Probability Formula
$$\mathsf{P(E)}=\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$Product Rule
$$\mathsf{P(A\:and\:B)}=\mathsf{P(A)}\times\mathsf{P(B)}$$Find the probability of drawing a Heart card.favourable outcomes`=``13` (`13` Heart cards)total outcomes`=``52` (`52` total cards)$$ \mathsf{P(H_1)} $$ `=` $$\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$ Probability Formula `=` $$\frac{\color{#e65021}{13}}{\color{#007DDC}{52}}$$ Substitute values Find the probability of drawing another Heart card. Remember to reduce the number of Heart cards and the total outcome.favourable outcomes`=``12` (`1` Heart card was already drawn)total outcomes`=``51` (`1` card was already drawn)$$ \mathsf{P(H_2)} $$ `=` $$\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$ Probability Formula `=` $$\frac{\color{#e65021}{12}}{\color{#007DDC}{51}}$$ Substitute values Now, substitute the probabilities into the product rule$$\mathsf{P(H_1)}$$ `=` $$\frac{13}{52}$$ $$\mathsf{P(H_2)}$$ `=` $$\frac{12}{51}$$ $$\mathsf{P(Heart\:and\:Heart)}$$ `=` $$\mathsf{P(H_1)}\times\mathsf{P(H_2)}$$ Product Rule `=` $$\frac{13}{52}\times\frac{12}{51}$$ Substitute values `=` $$\frac{156}{2652}$$ `=` $$\frac{1}{17}$$ Simplify `1/17` -
Question 4 of 7
4. Question
Find the probability of drawing a Jack and an Ace from a standard deck of cards without replacement.Write fractions in the format “a/b”- (4/663, 16/2652)
Hint
Help VideoCorrect
Fantastic!
Incorrect
Probability Formula
$$\mathsf{P(E)}=\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$Product Rule
$$\mathsf{P(A\:and\:B)}=\mathsf{P(A)}\times\mathsf{P(B)}$$Find the probability of drawing a Jack card.favourable outcomes`=``4` (`4` Jack cards)total outcomes`=``52` (`52` total cards)$$ \mathsf{P(Jack)} $$ `=` $$\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$ Probability Formula `=` $$\frac{\color{#e65021}{4}}{\color{#007DDC}{52}}$$ Substitute values Find the probability of drawing an Ace card. Remember to reduce the total outcome.favourable outcomes`=``4` (`4` Ace cards)total outcomes`=``51` (`1` card was already drawn)$$ \mathsf{P(Ace)} $$ `=` $$\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$ Probability Formula `=` $$\frac{\color{#e65021}{4}}{\color{#007DDC}{51}}$$ Substitute values Now, substitute the probabilities into the product rule$$\mathsf{P(Jack)}$$ `=` $$\frac{4}{52}$$ $$\mathsf{P(Ace)}$$ `=` $$\frac{4}{51}$$ $$\mathsf{P(Jack\:and\:Ace)}$$ `=` $$\mathsf{P(Jack)}\times\mathsf{P(Ace)}$$ Product Rule `=` $$\frac{4}{52}\times\frac{4}{51}$$ Substitute values `=` $$\frac{16}{2652}$$ `=` $$\frac{4}{663}$$ Simplify `4/663` -
Question 5 of 7
5. Question
Find the probability of drawing `2` Spade cards from a standard deck of cards without replacement.Write fractions in the format “a/b”- (1/17, 156/2652)
Hint
Help VideoCorrect
Correct!
Incorrect
Probability Formula
$$\mathsf{P(E)}=\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$Product Rule
$$\mathsf{P(A\:and\:B)}=\mathsf{P(A)}\times\mathsf{P(B)}$$Find the probability of drawing a Spade card.favourable outcomes`=``13` (`13` Spade cards)total outcomes`=``52` (`52` total cards)$$ \mathsf{P(S_1)} $$ `=` $$\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$ Probability Formula `=` $$\frac{\color{#e65021}{13}}{\color{#007DDC}{52}}$$ Substitute values Find the probability of drawing another Spade card. Remember to reduce the number of Spade cards and the total outcome.favourable outcomes`=``12` (`1` Spade card was already drawn)total outcomes`=``51` (`1` card was already drawn)$$ \mathsf{P(S_2)} $$ `=` $$\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$ Probability Formula `=` $$\frac{\color{#e65021}{12}}{\color{#007DDC}{51}}$$ Substitute values Now, substitute the probabilities into the product rule$$\mathsf{P(S_1)}$$ `=` $$\frac{13}{52}$$ $$\mathsf{P(S_2)}$$ `=` $$\frac{12}{51}$$ $$\mathsf{P(Spade\:and\:Spade)}$$ `=` $$\mathsf{P(S_1)}\times\mathsf{P(S_2)}$$ Product Rule `=` $$\frac{13}{52}\times\frac{12}{51}$$ Substitute values `=` $$\frac{156}{2652}$$ `=` $$\frac{1}{17}$$ Simplify `1/17` -
Question 6 of 7
6. Question
`50` tickets were sold for a raffle and Jack bought `10` tickets. What is the probability of Jack winning the `1st` and `2nd` prize without replacement?Write fractions in the format “a/b”- (9/245, 90/2450)
Hint
Help VideoCorrect
Excellent!
Incorrect
Probability Formula
$$\mathsf{P(E)}=\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$Product Rule
$$\mathsf{P(A\:and\:B)}=\mathsf{P(A)}\times\mathsf{P(B)}$$Find the probability of Jack winning the `1st` prize.favourable outcomes`=``10` (Jack’s tickets)total outcomes`=``50` (Total tickets)$$ \mathsf{P(1st)} $$ `=` $$\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$ Probability Formula `=` $$\frac{\color{#e65021}{10}}{\color{#007DDC}{50}}$$ Substitute values Find the probability of Jack winning the `2nd` prize. Remember to reduce the number Jack’s tickets and the total outcome.favourable outcomes`=``9` (`1` ticket was already used)total outcomes`=``49` (`1` ticket was already used)$$ \mathsf{P(2nd)} $$ `=` $$\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$ Probability Formula `=` $$\frac{\color{#e65021}{9}}{\color{#007DDC}{49}}$$ Substitute values Now, substitute the probabilities into the product rule$$\mathsf{P(1st)}$$ `=` $$\frac{10}{50}$$ $$\mathsf{P(2nd)}$$ `=` $$\frac{9}{49}$$ $$\mathsf{P(First\:and\:Second)}$$ `=` $$\mathsf{P(1st)}\times\mathsf{P(2nd)}$$ Product Rule `=` $$\frac{10}{50}\times\frac{9}{49}$$ Substitute values `=` $$\frac{90}{2450}$$ `=` $$\frac{9}{245}$$ Simplify `9/245` -
Question 7 of 7
7. Question
`50` tickets were sold for a raffle and Jack bought `10` tickets. What is the probability of Jack not winning the `1st` and `2nd` prize without replacement?Write fractions in the format “a/b”- (5/24, 10/48)
Hint
Help VideoCorrect
Exceptional!
Incorrect
Probability Formula
$$\mathsf{P(E)}=\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$Product Rule
$$\mathsf{P(A\:and\:B)}=\mathsf{P(A)}\times\mathsf{P(B)}$$Find the probability of Jack winning the `1st` and `2nd` prize.favourable outcomes`=``10` (Jack’s tickets)total outcomes`=``48` (`1st` and `2nd` prizes were removed)$$ \mathsf{P(Not Winning)} $$ `=` $$\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$ Probability Formula `=` $$\frac{\color{#e65021}{10}}{\color{#007DDC}{48}}$$ Substitute values `=` $$\frac{\color{#e65021}{5}}{\color{#007DDC}{24}}$$ Simplify Therefore, the probability of Jack not winning the `1st` and `2nd` prizes is `5/24``5/24`
Quizzes
- Simple Probability (Theoretical) 1
- Simple Probability (Theoretical) 2
- Simple Probability (Theoretical) 3
- Simple Probability (Theoretical) 4
- Complementary Probability
- Compound Events (Addition Rule) 1
- Compound Events (Addition Rule) 2
- Venn Diagrams (Mutually Inclusive)
- Independent Events 1
- Independent Events 2
- Dependent Events (Conditional Probability)
- Probability Tree (Independent Events) 1
- Probability Tree (Independent Events) 2
- Probability Tree (Dependent Events)