Trapezoidal Rule
Try VividMath Premium to unlock full access
Time limit: 0
Quiz summary
0 of 5 questions completed
Questions:
- 1
- 2
- 3
- 4
- 5
Information
–
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading...
You must sign in or sign up to start the quiz.
You have to finish following quiz, to start this quiz:
Loading...
- 1
- 2
- 3
- 4
- 5
- Answered
- Review
-
Question 1 of 5
1. Question
Approximate the area under the curve `y=10/x` using Trapezoidal rule.- `text(Area) =` (16.8333) `\text(square units)`
Hint
Help VideoCorrect
Well Done!
Incorrect
Remember
The Trapezoidal Rule approximates the area under a curve by dividing it into several trapezia.Trapezoidal Rule
`A ≈ h/2 [y_0 + y_L +2(y_1 + y_2 + y_3 + … + y_(L-1)]`First, find the values of `a`, `b` and `n` from the given equation$$\int_{\color{#9a00c7}{1}}^{\color{#007ddc}{5}} y$$ `=` `(10)/x` `a=1`(lower limit)`b=5`(upper limit)`n=4`(number of strips in given diagram)Solve for `h``h` `=` $$\frac {\color {#007ddc}{b}-\color {#9a00c7}{a}}{\color {#00880a}{n}} $$ `=` $$\frac {\color {#007ddc}{5}-\color {#9a00c7}{1}}{\color {#00880a}{4}} $$ Substitute values of `a`, `b`, and `n` `=` `4/4` Simplify `=` `1` Construct a table of values to find the `\text(y-values)` for each `\text(x-value)``y=10/x``x` `1` `2` `3` `4` `5` `y` Substitute `x=1` into the given equation.`y` `=` $$\frac {10}{\color{#9a00c7}{1}}$$ `y_0` `=` `10` `x` `1` `2` `3` `4` `5` `y` `10` Substitute `x=2` into the given equation.`y` `=` $$\frac {10}{\color{#9a00c7}{2}}$$ `y_1` `=` `5` `x` `1` `2` `3` `4` `5` `y` `10` `5` Repeat this process for each `\text(x-value)``x` `1` `2` `3` `4` `5` `y` `10` `5` `10/3` `10/4` `2` Apply the Trapezoidal Rule`A` `≈` `h/2 [``y_0` `+` `y_L` `+ 2(``y_1`` +` `y_2`` + ``y_3` `+ … +` `y_(L-1)``]` Trapezoidal Rule formula `≈` `1/2 [``10``+``2``+2(``5``+``(10)/3``+``(10)/4)``]` `h=1` `≈` `1/2 [12+2((65)/6)]` Simplify `≈` `1/2 [(101)/3]` `≈` `16.8333` `16.8333 \text(square units)` -
Question 2 of 5
2. Question
Approximate the area under the curve `y=1/(2x-1)` using Trapezoidal rule.- `text(Area) =` (0.39554) `\text(square units)`
Hint
Help VideoCorrect
Nice Job!
Incorrect
Remember
The Trapezoidal Rule approximates the area under a curve by dividing it into several trapezia.Trapezoidal Rule
`A ≈ h/2 [y_0 + y_L +2(y_1 + y_2 + y_3 + … + y_(L-1)]`First, find the values of `a`, `b` and `n` from the given equation$$\int_{\color{#9a00c7}{3}}^{\color{#007ddc}{6}} y$$ `=` `1/(2x-1)` `a=3`(lower limit)`b=6`(upper limit)`n=6`(number of strips in given diagram)Solve for `h``h` `=` $$\frac {\color {#007ddc}{b}-\color {#9a00c7}{a}}{\color {#00880a}{n}} $$ `=` $$\frac {\color {#007ddc}{6}-\color {#9a00c7}{3}}{\color {#00880a}{6}} $$ Substitute values of `a`, `b`, and `n` `=` `3/6` Simplify `=` `1/2` Construct a table of values to find the `\text(y-values)` for each `\text(x-value)``y=1/(2x-1)``x` `3` `3.5` `4` `4.5` `5` `5.5` `6` `y` Substitute `x=3` into the given equation.`y` `=` $$\frac {1}{2 \left(\color{#9a00c7}{3} \right) -1}$$ `=` `1/(6-1)` `y_0` `=` `1/5` `x` `3` `3.5` `4` `4.5` `5` `5.5` `6` `y` `1/5` Substitute `x=3.5` into the given equation.`y` `=` $$\frac {1}{2 \left(\color{#9a00c7}{3.5} \right) -1}$$ `=` `1/(7-1)` `y_1` `=` `1/6` `x` `3` `3.5` `4` `4.5` `5` `5.5` `6` `y` `1/5` `1/6` Repeat this process for each `\text(x-value)``x` `3` `3.5` `4` `4.5` `5` `5.5` `6` `y` `1/5` `1/6` `1/7` `1/8` `1/9` `1/10` `1/11` Apply the Trapezoidal Rule`A` `≈` `h/2 [``y_0` `+` `y_L` `+ 2(``y_1`` +` `y_2`` + ``y_3` `+ … +` `y_(L-1)``]` Trapezoidal Rule formula `≈` `(1/2)/2 [``1/5``+``1/11``+2(``1/6``+``1/7``+``1/8``+``1/9``+``1/10``+``1/11``)]` `h=1/2` `≈` `1/4 [16/55 +2((1627)/(2520))]` Simplify `≈` `1/4 [1.582179]` `≈` `0.39554` `0.39554 \text(square units)` -
Question 3 of 5
3. Question
Approximate the area under the curve `y=4^x` using Trapezoidal rule.- `text(Area) =` (2.1855) `\text(square units)`
Hint
Help VideoCorrect
Excellent!
Incorrect
Remember
The Trapezoidal Rule approximates the area under a curve by dividing it into several trapezia.Trapezoidal Rule
`A ≈ h/2 [y_0 + y_L +2(y_1 + y_2 + y_3 + … + y_(L-1)]`First, find the values of `a`, `b` and `n` from the given equation$$\int_{\color{#9a00c7}{0}}^{\color{#007ddc}{1}} y$$ `=` `4^x` `a=0`(lower limit)`b=1`(upper limit)`n=4`(number of strips in given diagram)Solve for `h``h` `=` $$\frac {\color {#007ddc}{b}-\color {#9a00c7}{a}}{\color {#00880a}{n}} $$ `=` $$\frac {\color {#007ddc}{1}-\color {#9a00c7}{0}}{\color {#00880a}{4}} $$ Substitute values of `a`, `b`, and `n` `=` `1/4` Simplify Construct a table of values to find the `\text(y-values)` for each `\text(x-value)``y=4^x``x` `0` `1/4` `1/2` `3/4` `1` `y` Substitute `x=0` into the given equation.`y` `=` $$ 4^{\color{#9a00c7}{0}}$$ `y_0` `=` `1` `x` `0` `1/4` `1/2` `3/4` `1` `y` `1` Substitute `x=1/4` into the given equation.`y` `=` $$ 4^{\color{#9a00c7}{1/4}}$$ `y_1` `=` `4^(1/4)` `x` `0` `1/4` `1/2` `3/4` `1` `y` `1` `4^(1/4)` Repeat this process for each `\text(x-value)``x` `0` `1/4` `1/2` `3/4` `1` `y` `1` `4^(1/4)` `2` `4^(3/4)` `4` Apply the Trapezoidal Rule`A` `≈` `h/2 [``y_0` `+` `y_L` `+ 2(``y_1`` +` `y_2`` + ``y_3` `+ … +` `y_(L-1)``]` Trapezoidal Rule formula `≈` `(1/4)/2 [``1``+``4``+2(``4^(1/4)``+``2``+``4^(3/4)``]` `h=1/4` `≈` `1/8 [5+2(6.242)]` Simplify `≈` `1/8 [5+12.484]` `≈` `1/8 [17.484]` `≈` `2.1855` `2.1855 \text(square units)` -
Question 4 of 5
4. Question
Approximate the area under the curve `y=(2x)/(1+x)` using Trapezoidal rule.- `text(Area) =` (139/30) `\text(square units)`
Hint
Help VideoCorrect
Fantastic!
Incorrect
Remember
The Trapezoidal Rule approximates the area under a curve by dividing it into several trapezia.Trapezoidal Rule
`A ≈ h/2 [y_0 + y_L +2(y_1 + y_2 + y_3 + … + y_(L-1)]`First, find the values of `a`, `b` and `n` from the given equation$$\int_{\color{#9a00c7}{0}}^{\color{#007ddc}{4}} y$$ `=` `(2x)/(1+x)` `a=0`(lower limit)`b=4`(upper limit)`n=4`(number of strips in given diagram)Solve for `h``h` `=` $$\frac {\color {#007ddc}{b}-\color {#9a00c7}{a}}{\color {#00880a}{n}} $$ `=` $$\frac {\color {#007ddc}{4}-\color {#9a00c7}{0}}{\color {#00880a}{4}} $$ Substitute values of `a`, `b`, and `n` `=` `4/4` Simplify `=` `1` Construct a table of values to find the `\text(y-values)` for each `\text(x-value)``y=(2x)/(1+x)``x` `0` `1` `2` `3` `4` `y` Substitute `x=0` into the given equation.`y` `=` $$\frac {2 \left(\color{#9a00c7}{0}\right)}{1+\color{#9a00c7}{0}}$$ `=` `0/1` `y_0` `=` `0` `x` `0` `1` `2` `3` `4` `y` `0` Substitute `x=1` into the given equation.`y` `=` $$\frac {2\left( \color{#9a00c7}{1}\right)}{1+\color{#9a00c7}{1}}$$ `=` `2/2` `y_1` `=` `1` `x` `0` `1` `2` `3` `4` `y` `0` `1` Repeat this process for each `\text(x-value)``x` `0` `1` `2` `3` `4` `y` `0` `1` `4/3` `6/4` `8/5` Apply the Trapezoidal Rule`A` `≈` `h/2 [``y_0` `+` `y_L` `+ 2(``y_1`` +` `y_2`` + ``y_3` `+ … +` `y_(L-1)``]` Trapezoidal Rule formula `≈` `1/2 [``0``+``8/5``+2(``1``+``4/3``+``6/4``)]` `h=1` `≈` `1/2 [8/5+2((23)/6)]` Simplify `≈` `1/2 [(139)/15]` `≈` `139/30` `139/30 \text(square units)` -
Question 5 of 5
5. Question
Find the entire surface area of the small lake.- `text(Area) =` (1560) `\text(square units)`
Hint
Help VideoCorrect
Keep Going!
Incorrect
Remember
The Trapezoidal Rule approximates the area under a curve by dividing it into several trapezia.Trapezoidal Rule
`A ≈ h/2 [y_0 + y_L +2(y_1 + y_2 + y_3 + … + y_(L-1)]`First, find the values of `a`, `b` and `n` from the given illustration`a=0`(lower limit)`b=50`(upper limit)`n=5`(number of strips in given diagram)Solve for `h``h` `=` $$\frac {\color {#007ddc}{b}-\color {#9a00c7}{a}}{\color {#00880a}{n}} $$ `=` $$\frac {\color {#007ddc}{50}-\color {#9a00c7}{0}}{\color {#00880a}{5}} $$ Substitute values of `a`, `b`, and `n` `=` `50/5` Simplify `=` `10` Construct a table of values to find the `\text(y-values)` for each `\text(x-value)` based on the given illustration.`x` `0` `10` `20` `30` `40` `50` `y` `0` `35` `32` `43` `46` `0` Apply the Trapezoidal Rule`A` `≈` `h/2 [``y_0` `+` `y_L` `+ 2(``y_1`` +` `y_2`` + ``y_3` `+ … +` `y_(L-1)``]` Trapezoidal Rule formula `≈` `10/2 [``0``+``0``+2(``35``+``32``+``43``+``46``)]` `h=10` `≈` `5 [2(156)]` Simplify `≈` `5 [312]` `≈` `1560` `1560 \text(square units)`
Quizzes
- Indefinite Integrals 1
- Indefinite Integrals 2
- Indefinite Integrals 3
- Definite Integrals
- Areas Between Curves and the Axis 1
- Areas Between Curves and the Axis 2
- The Area Between Curves
- Volumes of Revolution 1
- Volumes of Revolution 2
- Volumes of Revolution 3
- Trapezoidal Rule
- Simpsons Rule
- Integral of a Trigonometric Function 1
- Integral of a Trigonometric Function 2
- Applications of Integration for Trig Functions