Solving Systems of Equations 2
Try VividMath Premium to unlock full access
Time limit: 0
Quiz summary
0 of 4 questions completed
Questions:
- 1
- 2
- 3
- 4
Information
–
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading...
You must sign in or sign up to start the quiz.
You have to finish following quiz, to start this quiz:
Loading...
- 1
- 2
- 3
- 4
- Answered
- Review
-
Question 1 of 4
1. Question
Solve for `x` and `y``6x-3y=-9``-4x-2y=26`-
`x=` (-4)`y=` (-5)
Hint
Help VideoCorrect
Great Work!
Incorrect
Row-Echelon Form
`[[1,x,x],[0,1,x]]`A system of equations can be solved by using matrices and applying row operations to achieve the Row-Echelon FormFirst, write the system of equations in matrix form by taking the constants`6x-3y=-9``-4x-2y=26`\begin{bmatrix}
6 & -3 & | & -9 \\
-4 & -2 & | & 26
\end{bmatrix} \begin{matrix}
\color{#6F6161}{R_1} \\
\color{#6F6161}{R_2}
\end{matrix}Use row operations for the matrix to achieve Row-Echelon FormStart with simplifying the two rowsSimplifying `R_1`:\begin{bmatrix}
6 & -3 & | & -9 \\
-4 & -2 & | & 26
\end{bmatrix} \begin{matrix}
\color{#6F6161}{R_1} \\
\color{#6F6161}{R_2}
\end{matrix}$$R_1\div3→R_1$$\begin{matrix}
R_1\div3→ 2 & -1 & | & -3
\end{matrix}Simplifying `R_2`:\begin{bmatrix}
2 & -1 & | & -3 \\
-4 & -2 & | & 26
\end{bmatrix} \begin{matrix}
\color{#6F6161}{R_1} \\
\color{#6F6161}{R_2}
\end{matrix}$$R_2\div2→R_2$$\begin{matrix}
R_1\div3→ -2 & -1 & | & 13
\end{matrix}New matrix:\begin{bmatrix}
2 & -1 & | & -3 \\
-2 & -1 & | & 13
\end{bmatrix} \begin{matrix}
\color{#6F6161}{R_1} \\
\color{#6F6161}{R_2}
\end{matrix}Proceed with transforming `R_2`Transforming the First Element of `R_2`:\begin{bmatrix}
2 & -1 & | & -3 \\
-2 & -1 & | & 13
\end{bmatrix} \begin{matrix}
\color{#6F6161}{R_1} \\
\color{#6F6161}{R_2}
\end{matrix}$$R_1+R_2→R_2$$\begin{matrix}
R_1: & 2 & -1 & | & -3 \\
R_2: & -2 & -1 & | & 13 \\
\hline
R_2→ & 0 & -2 & | & 10
\end{matrix}Transforming the Second Element of `R_2`:\begin{bmatrix}
2 & -1 & | & -3 \\
0 & -2 & | & 10
\end{bmatrix} \begin{matrix}
\color{#6F6161}{R_1} \\
\color{#6F6161}{R_2}
\end{matrix}$$R_2\div-2→R_2$$\begin{matrix}
R_2\div41→ 0 & 1 & | & -5
\end{matrix}New matrix:\begin{bmatrix}
2 & -1 & | & -3 \\
0 & 1 & | & -5
\end{bmatrix} \begin{matrix}
\color{#6F6161}{R_1} \\
\color{#6F6161}{R_2}
\end{matrix}Next, transform `R_1`Transforming the First Element of `R_1`:\begin{bmatrix}
2 & -1 & | & -3 \\
0 & 1 & | & -5
\end{bmatrix} \begin{matrix}
\color{#6F6161}{R_1} \\
\color{#6F6161}{R_2}
\end{matrix}$$R_1\div2→R_1$$\begin{matrix}
R_1\div2→ 1 & -\frac{1}{2} & | & -\frac{3}{2}
\end{matrix}New matrix:\begin{bmatrix}
1 & -\frac{1}{2} & | & -\frac{3}{2} \\[0.3em]
0 & 1 & | & -5
\end{bmatrix} \begin{matrix}
\color{#6F6161}{R_1} \\
\color{#6F6161}{R_2}
\end{matrix}This new matrix is in Row-Echelon FormRemember that each row in this matrix corresponds to a term in an equationConvert `R_2` into an equation\begin{matrix}
\color{#6F6161}{\:x} & \color{#6F6161}{y} & \: & \color{#6F6161}{\:\:C}
\end{matrix}
\begin{bmatrix}
0 & 1 & | & -5
\end{bmatrix}\begin{matrix}
\:\: & \color{#00880A}{y} & = & \color{#00880A}{-5}
\end{matrix}This time, convert `R_1` into an equation then substitute the value of `y` to find `x`\begin{matrix}
\color{#6F6161}{\:\;x} & \color{#6F6161}{\:\:y} & \: & \color{#6F6161}{\:\:\:\:C}
\end{matrix}
\begin{bmatrix}
1 & -\frac{1}{2} & | & -\frac{3}{2}
\end{bmatrix}`x-1/2y` `=` `-3/2` `x-1/2(-5)` `=` `-3/2` Substitute `y=-5` `x+5/2` `=` `-3/2` `x+5/2` `-5/2` `=` `-3/2` `-5/2` Subtract `5/2` from both sides `x` `=` `-8/2` `x` `=` `-4` `x=-4``y=-5` -
-
Question 2 of 4
2. Question
Solve for `x,y` and `z``5x+3z=-3``y+4z=15``2x-4y-z=-6`-
`x=` (-3)`y=` (-1)`z=` (4)
Hint
Help VideoCorrect
Correct!
Incorrect
Row-Echelon Form
`[[1,x,x,x],[0,1,x,x],[0,0,1,x]]`A system of equations can be solved by using matrices and applying row operations to achieve the Row-Echelon FormFirst, write the system of equations in matrix form by taking the constants`5x+3z=-3``y+4z=15``2x-4y-z=-6`\begin{bmatrix}
5 & 0 & 3 & | & -3 \\
0 & 1 & 4 & | & 15 \\
2 & -4 & -1 & | & -6
\end{bmatrix} \begin{matrix}
\color{#6F6161}{R_1} \\
\color{#6F6161}{R_2} \\
\color{#6F6161}{R_3}
\end{matrix}Use row operations for the matrix to achieve Row-Echelon FormStart with transforming `R_3`Transforming the First Element of `R_3`:\begin{bmatrix}
5 & 0 & 3 & | & -3 \\
0 & 1 & 4 & | & 15 \\
2 & -4 & -1 & | & -6
\end{bmatrix} \begin{matrix}
\color{#6F6161}{R_1} \\
\color{#6F6161}{R_2} \\
\color{#6F6161}{R_3}
\end{matrix}$$2R_1-5R_3→R_3$$\begin{matrix}
\:\:2R_1: & 10 & 0 & 6 & | & -6 \\
-5R_3: & -10 & 20 & 5 & | & 30 \\
\hline
\:R_3→ & 0 & 20 & 11 & | & 24
\end{matrix}Transforming the Second Element of `R_3`:\begin{bmatrix}
5 & 0 & 3 & | & -3 \\
0 & 1 & 4 & | & 15 \\
0 & 20 & 11 & | & 24
\end{bmatrix} \begin{matrix}
\color{#6F6161}{R_1} \\
\color{#6F6161}{R_2} \\
\color{#6F6161}{R_3}
\end{matrix}$$20R_2-R_3→R_3$$\begin{matrix}
20R_2: & 0 & 20 & 80 & | & 300 \\
-R_3: & 0 & -20 & -11 & | & -24 \\
\hline
\:R_3→ & 0 & 0 & 69 & | & 276
\end{matrix}Transforming the Third Element of `R_3`:\begin{bmatrix}
5 & 0 & 3 & | & -3 \\
0 & 1 & 4 & | & 15 \\
0 & 0 & 69 & | & 276
\end{bmatrix} \begin{matrix}
\color{#6F6161}{R_1} \\
\color{#6F6161}{R_2} \\
\color{#6F6161}{R_3}
\end{matrix}$$R_3\div69→R_3$$\begin{matrix}
R_3\div69→ 0 & 0 & 1 & | & 4
\end{matrix}New matrix:\begin{bmatrix}
5 & 0 & 3 & | & -3 \\
0 & 1 & 4 & | & 15 \\
0 & 0 & 1 & | & 4
\end{bmatrix} \begin{matrix}
\color{#6F6161}{R_1} \\
\color{#6F6161}{R_2} \\
\color{#6F6161}{R_3}
\end{matrix}Notice that `R_2` is already in Row-Echelon Form. Hence, continue with transforming `R_1`Transforming the First Element of `R_1`:\begin{bmatrix}
5 & 0 & 3 & | & -3 \\
0 & 1 & 4 & | & 15 \\
0 & 0 & 1 & | & 4
\end{bmatrix} \begin{matrix}
\color{#6F6161}{R_1} \\
\color{#6F6161}{R_2} \\
\color{#6F6161}{R_3}
\end{matrix}$$R_1\div5→R_1$$\begin{matrix}
R_1\div5→ 1 & 0 & \frac{3}{5} & | & \frac{-3}{5}
\end{matrix}New matrix:\begin{bmatrix}
1 & 0 & \frac{3}{5} & | & \frac{-3}{5} \\[0.3em]
0 & 1 & 4 & | & 15 \\
0 & 0 & 1 & | & 4
\end{bmatrix} \begin{matrix}
\color{#6F6161}{R_1} \\
\color{#6F6161}{R_2} \\
\color{#6F6161}{R_3}
\end{matrix}This new matrix is in Row-Echelon FormRemember that each row in this matrix corresponds to a term in an equationConvert `R_3` into an equation\begin{matrix}
\color{#6F6161}{\:x} & \color{#6F6161}{y} & \color{#6F6161}{z} & \: & \color{#6F6161}{C}
\end{matrix}
\begin{bmatrix}
0 & 0 & 1 & | & 4
\end{bmatrix}\begin{matrix}
\:\: & \:\: & \color{#00880A}{z} & = & \color{#00880A}{4}
\end{matrix}Next, convert `R_2` into an equation then substitute the value of `z` to find `y`\begin{matrix}
\color{#6F6161}{\:x} & \color{#6F6161}{y} & \color{#6F6161}{z} & \: & \color{#6F6161}{\:C}
\end{matrix}
\begin{bmatrix}
0 & 1 & 4 & | & 15
\end{bmatrix}`y+4z` `=` `15` `y+4(4)` `=` `15` Substitute `z=4` `y+16` `=` `15` `y+16` `-16` `=` `15` `-16` `y` `=` `-1` Lastly, convert `R_1` into an equation then substitute the value of `z` to find `x`\begin{matrix}
\color{#6F6161}{\;\:x} & \color{#6F6161}{y} & \color{#6F6161}{z} & \: & \color{#6F6161}{\;C}
\end{matrix}
\begin{bmatrix}
1 & 0 & \frac{3}{5} & | & \frac{-3}{5}
\end{bmatrix}`x+3/5z` `=` `(-3)/5` `x+3/5(4)` `=` `(-3)/5` Substitute `z=4` `x+12/5` `=` `(-3)/5` `x+12/5` `-12/5` `=` `(-3)/5` `-12/5` `x` `=` `(-15)/5` `x` `=` `-3` `x=-3``y=-1``z=4` -
-
Question 3 of 4
3. Question
Solve for `x,y` and `z``4x+2y+z=-3``x-3y=-11``2x+y-2z=1`-
`x=` (-2)`y=` (3)`z=` (-1)
Hint
Help VideoCorrect
Keep Going!
Incorrect
Row-Echelon Form
`[[1,x,x,x],[0,1,x,x],[0,0,1,x]]`A system of equations can be solved by using matrices and applying row operations to achieve the Row-Echelon FormFirst, write the system of equations in matrix form by taking the constants`4x+2y+z=-3``x-3y=-11``2x+y-2z=1`\begin{bmatrix}
4 & 2 & 1 & | & -3 \\
1 & -3 & 0 & | & -11 \\
2 & 1 & -2 & | & 1
\end{bmatrix} \begin{matrix}
\color{#6F6161}{R_1} \\
\color{#6F6161}{R_2} \\
\color{#6F6161}{R_3}
\end{matrix}Use row operations for the matrix to achieve Row-Echelon FormStart with swapping `R_1` and `R_2`, since the first element of `R_2` is already `1`\begin{bmatrix}
1 & -3 & 0 & | & -11 \\
4 & 2 & 1 & | & -3 \\
2 & 1 & -2 & | & 1
\end{bmatrix} \begin{matrix}
\color{#6F6161}{R_1} \\
\color{#6F6161}{R_2} \\
\color{#6F6161}{R_3}
\end{matrix}Proceed with transforming the first columnTransforming the First Element of `R_3`:\begin{bmatrix}
1 & -3 & 0 & | & -11 \\
4 & 2 & 1 & | & -3 \\
2 & 1 & -2 & | & 1
\end{bmatrix} \begin{matrix}
\color{#6F6161}{R_1} \\
\color{#6F6161}{R_2} \\
\color{#6F6161}{R_3}
\end{matrix}$$-2R_1+R_3→R_3$$\begin{matrix}
-2R_1: & -2 & 6 & 0 & | & 22 \\
\:R_3: & 2 & 1 & -2 & | & 1 \\
\hline
\:R_3→ & 0 & 7 & -2 & | & 23
\end{matrix}Transforming the First Element of `R_2`:\begin{bmatrix}
1 & -3 & 0 & | & -11 \\
4 & 2 & 1 & | & -3 \\
0 & 7 & -2 & | & 23
\end{bmatrix} \begin{matrix}
\color{#6F6161}{R_1} \\
\color{#6F6161}{R_2} \\
\color{#6F6161}{R_3}
\end{matrix}$$-4R_1+R_2→R_2$$\begin{matrix}
-4R_1: & -4 & 12 & 0 & | & 44 \\
R_2: & 4 & 2 & 1 & | & -3 \\
\hline
\:R_3→ & 0 & 14 & 1 & | & 41
\end{matrix}New matrix:\begin{bmatrix}
1 & -3 & 0 & | & -11 \\
0 & 14 & 1 & | & 41 \\
0 & 7 & -2 & | & 23
\end{bmatrix} \begin{matrix}
\color{#6F6161}{R_1} \\
\color{#6F6161}{R_2} \\
\color{#6F6161}{R_3}
\end{matrix}Continue with transforming `R_3`Transforming the Second Element of `R_3`:\begin{bmatrix}
1 & -3 & 0 & | & -11 \\
0 & 14 & 1 & | & 41 \\
0 & 7 & -2 & | & 23
\end{bmatrix} \begin{matrix}
\color{#6F6161}{R_1} \\
\color{#6F6161}{R_2} \\
\color{#6F6161}{R_3}
\end{matrix}$$R_2-2R_3→R_3$$\begin{matrix}
R_2: & 0 & 14 & 1 & | & 41 \\
-2R_3: & 0 & -14 & 4 & | & -46 \\
\hline
\:R_3→ & 0 & 0 & 5 & | & -5
\end{matrix}Transforming the Third Element of `R_3`:\begin{bmatrix}
1 & -3 & 0 & | & -11 \\
0 & 14 & 1 & | & 41 \\
0 & 0 & 5 & | & -5
\end{bmatrix} \begin{matrix}
\color{#6F6161}{R_1} \\
\color{#6F6161}{R_2} \\
\color{#6F6161}{R_3}
\end{matrix}$$R_3\div5→R_3$$\begin{matrix}
R_3\div5→ 0 & 0 & 1 & | & -1
\end{matrix}New matrix:\begin{bmatrix}
1 & -3 & 0 & | & -11 \\
0 & 14 & 1 & | & 41 \\
0 & 0 & 1 & | & -1
\end{bmatrix} \begin{matrix}
\color{#6F6161}{R_1} \\
\color{#6F6161}{R_2} \\
\color{#6F6161}{R_3}
\end{matrix}Next, transform `R_2`Transforming the Second Element of `R_2`:\begin{bmatrix}
1 & -3 & 0 & | & -11 \\
0 & 14 & 1 & | & 41 \\
0 & 0 & 1 & | & -1
\end{bmatrix} \begin{matrix}
\color{#6F6161}{R_1} \\
\color{#6F6161}{R_2} \\
\color{#6F6161}{R_3}
\end{matrix}$$R_2\div14→R_2$$\begin{matrix}
R_2\div14→ 0 & 1 & \frac{1}{14} & | & \frac{41}{14}
\end{matrix}New matrix:\begin{bmatrix}
1 & -3 & 0 & | & -11 \\[0.3em]
0 & 1 & \frac{1}{14} & | & \frac{41}{14} \\[0.3em]
0 & 0 & 1 & | & -1
\end{bmatrix} \begin{matrix}
\color{#6F6161}{R_1} \\
\color{#6F6161}{R_2} \\
\color{#6F6161}{R_3}
\end{matrix}This new matrix is in Row-Echelon FormRemember that each row in this matrix corresponds to a term in an equationConvert `R_3` into an equation\begin{matrix}
\color{#6F6161}{\:x} & \color{#6F6161}{y} & \color{#6F6161}{z} & \: & \color{#6F6161}{\:\;C}
\end{matrix}
\begin{bmatrix}
0 & 0 & 1 & | & -1
\end{bmatrix}\begin{matrix}
\:\: & \:\: & \color{#00880A}{\:z} & = & \color{#00880A}{-1}
\end{matrix}Next, convert `R_2` into an equation then substitute the value of `z` to find `y`\begin{matrix}
\color{#6F6161}{\:\,x} & \color{#6F6161}{y} & \color{#6F6161}{\:z} & \: & \color{#6F6161}{\:\:\;C}
\end{matrix}
\begin{bmatrix}
0 & 1 & \frac{1}{14} & | & \frac{41}{14}
\end{bmatrix}`y+1/14z` `=` `41/14` `y+1/14(-1)` `=` `41/14` Substitute `z=-1` `y-1/14` `=` `41/14` `y-1/14` `+1/14` `=` `41/14` `+1/14` Add `1/14` to both sides `y` `=` `42/14` `y` `=` `3` Lastly, convert `R_1` into an equation then substitute the value of `y` to find `x`\begin{matrix}
\color{#6F6161}{\:x} & \color{#6F6161}{\:\:y} & \color{#6F6161}{\:z} & \: & \color{#6F6161}{\;\:\:C}
\end{matrix}
\begin{bmatrix}
1 & -3 & 0 & | & -11
\end{bmatrix}`x-3y` `=` `-11` `x-3(3)` `=` `-11` Substitute `y=3` `x-9` `=` `-11` `x-9` `+9` `=` `-11` `+9` Add `9` to both sides `x` `=` `-2` `x=-2``y=3``z=-1` -
-
Question 4 of 4
4. Question
Solve for `x,y` and `z``3x-2y=16``2x+y+5z=1``x+4y-z=-3`-
`x=` (4)`y=` (-2)`z=` (-1)
Hint
Help VideoCorrect
Well Done!
Incorrect
Row-Echelon Form
`[[1,x,x,x],[0,1,x,x],[0,0,1,x]]`A system of equations can be solved by using matrices and applying row operations to achieve the Row-Echelon FormFirst, write the system of equations in matrix form by taking the constants`3x-2y=16``2x+y+5z=1``x+4y-z=-3`\begin{bmatrix}
3 & -2 & 0 & | & 16 \\
2 & 1 & 5 & | & 1 \\
1 & 4 & -1 & | & -3
\end{bmatrix} \begin{matrix}
\color{#6F6161}{R_1} \\
\color{#6F6161}{R_2} \\
\color{#6F6161}{R_3}
\end{matrix}Use row operations for the matrix to achieve Row-Echelon FormStart with transforming `R_2`Transforming the First Element of `R_2`:\begin{bmatrix}
3 & -2 & 0 & | & 16 \\
2 & 1 & 5 & | & 1 \\
1 & 4 & -1 & | & -3
\end{bmatrix} \begin{matrix}
\color{#6F6161}{R_1} \\
\color{#6F6161}{R_2} \\
\color{#6F6161}{R_3}
\end{matrix}$$-2R_3+R_2→R_2$$\begin{matrix}
-2R_3: & -2 & -8 & 2 & | & 6 \\
\:R_2: & 2 & 1 & 5 & | & 1 \\
\hline
\:R_2→ & 0 & -7 & 7 & | & 7
\end{matrix}Transforming the Second Element of `R_2`:\begin{bmatrix}
3 & -2 & 0 & | & 16 \\
0 & -7 & 7 & | & 7 \\
1 & 4 & -1 & | & -3
\end{bmatrix} \begin{matrix}
\color{#6F6161}{R_1} \\
\color{#6F6161}{R_2} \\
\color{#6F6161}{R_3}
\end{matrix}$$R_2\div-7→R_2$$\begin{matrix}
R_2\div-7→ 0 & 1 & -1 & | & -1
\end{matrix}New matrix:\begin{bmatrix}
3 & -2 & 0 & | & 16 \\
0 & 1 & -1 & | & -1 \\
1 & 4 & -1 & | & -3
\end{bmatrix} \begin{matrix}
\color{#6F6161}{R_1} \\
\color{#6F6161}{R_2} \\
\color{#6F6161}{R_3}
\end{matrix}Next, swap `R_1` and `R_3`, since the first element of `R_3` is already `1`\begin{bmatrix}
1 & 4 & -1 & | & -3 \\
0 & 1 & -1 & | & -1 \\
3 & -2 & 0 & | & 16
\end{bmatrix} \begin{matrix}
\color{#6F6161}{R_1} \\
\color{#6F6161}{R_2} \\
\color{#6F6161}{R_3}
\end{matrix}Continue with transforming `R_3`Transforming the First Element of `R_3`:\begin{bmatrix}
1 & 4 & -1 & | & -3 \\
0 & 1 & -1 & | & -1 \\
3 & -2 & 0 & | & 16
\end{bmatrix} \begin{matrix}
\color{#6F6161}{R_1} \\
\color{#6F6161}{R_2} \\
\color{#6F6161}{R_3}
\end{matrix}$$-3R_1+R_3→R_3$$\begin{matrix}
-3R_1: & -3 & -12 & 3 & | & 9 \\
R_3: & 3 & -2 & 0 & | & 16 \\
\hline
\:R_3→ & 0 & -14 & 3 & | & 25
\end{matrix}Transforming the Second Element of `R_3`:\begin{bmatrix}
1 & 4 & -1 & | & -3 \\
0 & 1 & -1 & | & -1 \\
0 & -14 & 3 & | & 25
\end{bmatrix} \begin{matrix}
\color{#6F6161}{R_1} \\
\color{#6F6161}{R_2} \\
\color{#6F6161}{R_3}
\end{matrix}$$14R_2+R_3→R_3$$\begin{matrix}
14R_2: & 0 & 14 & -14 & | & -14 \\
R_3: & 0 & -14 & 3 & | & 25 \\
\hline
\:R_3→ & 0 & 0 & -11 & | & 11
\end{matrix}Transforming the Third Element of `R_3`:\begin{bmatrix}
1 & 4 & -1 & | & -3 \\
0 & 1 & -1 & | & -1 \\
0 & 0 & -11 & | & 11
\end{bmatrix} \begin{matrix}
\color{#6F6161}{R_1} \\
\color{#6F6161}{R_2} \\
\color{#6F6161}{R_3}
\end{matrix}$$R_3\div-11→R_3$$\begin{matrix}
R_3\div-11→ 0 & 0 & 1 & | & -1
\end{matrix}New matrix:\begin{bmatrix}
1 & 4 & -1 & | & -3 \\
0 & 1 & -1 & | & -1 \\
0 & 0 & 1 & | & -1
\end{bmatrix} \begin{matrix}
\color{#6F6161}{R_1} \\
\color{#6F6161}{R_2} \\
\color{#6F6161}{R_3}
\end{matrix}This new matrix is in Row-Echelon FormRemember that each row in this matrix corresponds to a term in an equationConvert `R_3` into an equation\begin{matrix}
\color{#6F6161}{\:x} & \color{#6F6161}{y} & \color{#6F6161}{z} & \: & \color{#6F6161}{\:\;C}
\end{matrix}
\begin{bmatrix}
0 & 0 & 1 & | & -1
\end{bmatrix}\begin{matrix}
\:\: & \:\: & \color{#00880A}{\:z} & = & \color{#00880A}{-1}
\end{matrix}Next, convert `R_2` into an equation then substitute the value of `z` to find `y`\begin{matrix}
\color{#6F6161}{\:\,x} & \color{#6F6161}{y} & \color{#6F6161}{\:z} & \: & \color{#6F6161}{\:\:\;C}
\end{matrix}
\begin{bmatrix}
0 & 1 & -1 & | & -1
\end{bmatrix}`y-z` `=` `-1` `y-(-1)` `=` `-1` Substitute `z=-1` `y+1` `=` `-1` `y+1` `-1` `=` `-1` `-1` Subtract `1` from both sides `y` `=` `-2` Lastly, convert `R_1` into an equation then substitute the values of `y` and `z` to find `x`\begin{matrix}
\color{#6F6161}{\:x} & \color{#6F6161}{\:\:y} & \color{#6F6161}{\:z} & \: & \color{#6F6161}{\;\:\:C}
\end{matrix}
\begin{bmatrix}
1 & 4 & -1 & | & -3
\end{bmatrix}`x+4y-z` `=` `-3` `x+4(-2)-(-1)` `=` `-3` Substitute `y=-2` and `z=-1` `x-8+1` `=` `-3` `x-7` `=` `-3` `x-7` `+7` `=` `-3` `+7` Add `7` to both sides `x` `=` `4` `x=4``y=-2``z=-1` -
Quizzes
- Adding & Subtracting Matrices 1
- Adding & Subtracting Matrices 2
- Adding & Subtracting Matrices 3
- Multiplying Matrices 1
- Multiplying Matrices 2
- Multiplication Word Problems
- Determinant of a Matrix
- Inverse of a Matrix
- Solving Systems of Equations 1
- Solving Systems of Equations 2
- Gauss Jordan Elimination
- Cramer’s Rule