Years
>
Year 12>
Probability>
Simple Probability (Theoretical)>
Simple Probability (Theoretical) 2Simple Probability (Theoretical) 2
Try VividMath Premium to unlock full access
Time limit: 0
Quiz summary
0 of 7 questions completed
Questions:
- 1
- 2
- 3
- 4
- 5
- 6
- 7
Information
–
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading...
You must sign in or sign up to start the quiz.
You have to finish following quiz, to start this quiz:
Loading...
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- Answered
- Review
-
Question 1 of 7
1. Question
Find the probability of rolling a six-sided dice and getting:`(i) 2``(ii) 4` or `5`Write fractions in the format “a/b”-
`(i)` (1/6, 0.17)`(ii)` (⅓, 1/3, 2/6, 0.33)
Hint
Help VideoCorrect
Keep Going!
Incorrect
Probability Formula
$$\mathsf{P(E)}=\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$Addition Principle
If two or more events are joined by OR, their probabilities should be added.`(i)` Find the probability of rolling a six-sided dice and getting `2`.favourable outcomes`=``1` (`2`)total outcomes`=``6` (`1,2,3,4,5,6`)$$ \mathsf{P(}2\mathsf{)} $$ `=` $$\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$ Probability Formula `=` $$\frac{\color{#e65021}{1}}{\color{#007DDC}{6}}$$ Substitute values `(ii)` Find the probability of rolling a six-sided dice and getting `4` or `5`.favourable outcomes`=``2` (`4,5`)total outcomes`=``6` (`1,2,3,4,5,6`)$$ \mathsf{P(}4\:\mathsf{or}\:5\mathsf{)} $$ `=` $$\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$ Probability Formula `=` $$\frac{\color{#e65021}{2}}{\color{#007DDC}{6}}$$ Substitute values `=` $$\frac{1}{3}$$ `(i) 1/6``(ii) 1/3` -
-
Question 2 of 7
2. Question
The numbers on this spinner correspond to the degree angle of that color. What is the probability of the arrow landing on:`(a)` Yellow`(b)` BlueWrite fractions in the format “a/b”-
`(a)` (½, 1/2, 180/360, 0.5)`(b)` (1/9, 40/360, 0.11)
Hint
Help VideoCorrect
Excellent!
Incorrect
Probability Formula
$$\mathsf{P(E)}=\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$`(a)` Find the probability of the arrow landing on Yellow.favourable outcomes`=``180` (degree measure of Yellow which is a semicircle)total outcomes`=``360` (degree measure of the whole circle)$$ \mathsf{P(Yellow)} $$ `=` $$\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$ Probability Formula `=` $$\frac{\color{#e65021}{180}}{\color{#007DDC}{360}}$$ Substitute values `=` $$\frac{1}{2}$$ `(b)` Find the probability of the arrow landing on Blue.favourable outcomes`=``40` (Blue measures `40` degrees)total outcomes`=``360` (degree measure of the whole circle)$$ \mathsf{P(Blue)} $$ `=` $$\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$ Probability Formula `=` $$\frac{\color{#e65021}{40}}{\color{#007DDC}{360}}$$ Substitute values `=` $$\frac{1}{9}$$ `(a) 1/2``(b) 1/9` -
-
Question 3 of 7
3. Question
The numbers on this spinner correspond to the degree angle of that color. What is the probability of the arrow landing on:`(c)` not Red`(d)` Blue or OrangeWrite fractions in the format “a/b”-
`(c)` (5/6, 300/360, 0.83)`(d)` (⅓, 1/3, 120/360, 0.33)
Hint
Help VideoCorrect
Well Done!
Incorrect
Probability Formula
$$\mathsf{P(E)}=\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$Addition Principle
If two or more events are joined by OR, their probabilities should be added.`(c)` Find the probability of the arrow NOT landing on Red.favourable outcomes`=360-60=``300` (degree measure of the sector without Red)total outcomes`=``360` (degree measure of the whole circle)$$ \mathsf{P(not\:Red)} $$ `=` $$\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$ Probability Formula `=` $$\frac{\color{#e65021}{300}}{\color{#007DDC}{360}}$$ Substitute values `=` $$\frac{5}{6}$$ `(d)` Find the probability of the arrow landing on Blue or Orange.favourable outcomes`=40+80=``120` (degree measure of Blue`+`Orange)total outcomes`=``360` (degree measure of the whole circle)$$ \mathsf{P(Blue\:or\:Orange)} $$ `=` $$\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$ Probability Formula `=` $$\frac{\color{#e65021}{120}}{\color{#007DDC}{360}}$$ Substitute values `=` $$\frac{1}{3}$$ `(c) 5/6``(d) 1/3` -
-
Question 4 of 7
4. Question
Given the spinner below, find the probability of the arrow landing on:`(a)` Pink `1``(b)` an Even numberWrite fractions in the format “a/b”-
`(a)` (1/5, 0.2)`(b)` (2/5, 0.4)
Hint
Help VideoCorrect
Nice Job!
Incorrect
Probability Formula
$$\mathsf{P(E)}=\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$Addition Principle
If two or more events are joined by OR, their probabilities should be added.`(a)` Find the probability of the arrow landing on Pink `1`.favourable outcomes`=``1` (Pink `1`)total outcomes`=``5` (Pink `1`, Green `2`, Orange `3`, Blue `4`, Yellow `5`)$$ \mathsf{P(Pink\:}1\mathsf{)} $$ `=` $$\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$ Probability Formula `=` $$\frac{\color{#e65021}{1}}{\color{#007DDC}{5}}$$ Substitute values `(b)` Find the probability of the arrow landing on an Even number.favourable outcomes`=``2` (Green `2`, Blue `4`)total outcomes`=``5` (Pink `1`, Green `2`, Orange `3`, Blue `4`, Yellow `5`)$$ \mathsf{P(Even)} $$ `=` $$\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$ Probability Formula `=` $$\frac{\color{#e65021}{2}}{\color{#007DDC}{5}}$$ Substitute values `(a) 1/5``(b) 2/5` -
-
Question 5 of 7
5. Question
Given the spinner below, find the probability of the arrow landing on:`(c)` an Odd number`(d)` ZeroWrite fractions in the format “a/b”-
`(c)` (3/5, 0.6)`(d)` (0, 0/5)
Hint
Help VideoCorrect
Fantastic!
Incorrect
Probability Formula
$$\mathsf{P(E)}=\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$Addition Principle
If two or more events are joined by OR, their probabilities should be added.`(c)` Find the probability of the arrow landing on an Odd number.favourable outcomes`=``3` (Pink `1`, Orange `3`, Yellow `5`)total outcomes`=``5` (Pink `1`, Green `2`, Orange `3`, Blue `4`, Yellow `5`)$$ \mathsf{P(Odd)} $$ `=` $$\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$ Probability Formula `=` $$\frac{\color{#e65021}{3}}{\color{#007DDC}{5}}$$ Substitute values `(d)` Find the probability of the arrow landing on Zero.favourable outcomes`=``0` (the Spinner has no sector with `0`)total outcomes`=``5` (Pink `1`, Green `2`, Orange `3`, Blue `4`, Yellow `5`)$$ \mathsf{P(Zero)} $$ `=` $$\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$ Probability Formula `=` $$\frac{\color{#e65021}{0}}{\color{#007DDC}{5}}$$ Substitute values `=` $$0$$ `(c) 3/5``(d) 0` -
-
Question 6 of 7
6. Question
A six-sided dice has `1` dot placed on the sides where there should be `2` and `3` while all the other sides have not been changed. Find the probability of rolling the dice and getting:`(a) 1``(b)` an Odd number`(c) 2`Write fractions in the format “a/b”-
`(a)` (½, 1/2, 3/6, 0.5)`(b)` (⅔, 2/3, 4/6, 0.67)`(c)` (0/6, 0)
Hint
Help VideoCorrect
Well Done!
Incorrect
Probability Formula
$$\mathsf{P(E)}=\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$Addition Principle
If two or more events are joined by OR, their probabilities should be added.`(a)` Find the probability of rolling the dice and getting `1`.favourable outcomes`=``3` (`1,1,1`)total outcomes`=``6` (`1,1,1,4,5,6`)$$ \mathsf{P(}1\mathsf{)} $$ `=` $$\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$ Probability Formula `=` $$\frac{\color{#e65021}{3}}{\color{#007DDC}{6}}$$ Substitute values `=` $$\frac{1}{2}$$ `(b)` Find the probability of rolling the dice and getting an Odd number of dots.favourable outcomes`=``4` (`1,1,1,5`)total outcomes`=``6` (`1,1,1,4,5,6`)$$ \mathsf{P(Odd)} $$ `=` $$\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$ Probability Formula `=` $$\frac{\color{#e65021}{4}}{\color{#007DDC}{6}}$$ Substitute values `=` $$\frac{2}{3}$$ `(c)` Find the probability of rolling the dice and getting `2`.favourable outcomes`=``0` (no side has `2` dots)total outcomes`=``6` (`1,1,1,4,5,6`)$$ \mathsf{P(}2\mathsf{)} $$ `=` $$\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$ Probability Formula `=` $$\frac{\color{#e65021}{0}}{\color{#007DDC}{6}}$$ Substitute values `=` $$0$$ `(a) 1/2``(b) 2/3``(c) 0` -
-
Question 7 of 7
7. Question
A six-sided dice has an uneven weight which causes the side with `4` dots to have twice the chance of any other side. Find the probability of rolling this dice and getting:`(a) 4``(b)` an Even numberWrite fractions in the format “a/b”-
`(a)` (2/7, 0.29)`(b)` (4/7, 0.57)
Hint
Help VideoCorrect
Correct!
Incorrect
Probability Formula
$$\mathsf{P(E)}=\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$Addition Principle
If two or more events are joined by OR, their probabilities should be added.`(a)` Find the probability of rolling the dice and getting `4`.favourable outcomes`=``2` (`4,4`)total outcomes`=``7` (`1,2,3,4,4,5,6`)$$ \mathsf{P(}4\mathsf{)} $$ `=` $$\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$ Probability Formula `=` $$\frac{\color{#e65021}{2}}{\color{#007DDC}{7}}$$ Substitute values `(b)` Find the probability of rolling the dice and getting an Even number of dots.favourable outcomes`=``4` (`2,4,4,6`)total outcomes`=``7` (`1,2,3,4,4,5,6`)$$ \mathsf{P(Even)} $$ `=` $$\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$ Probability Formula `=` $$\frac{\color{#e65021}{4}}{\color{#007DDC}{7}}$$ Substitute values `(a) 2/7``(b) 4/7` -
Quizzes
- Simple Probability (Theoretical) 1
- Simple Probability (Theoretical) 2
- Simple Probability (Theoretical) 3
- Simple Probability (Theoretical) 4
- Complementary Probability
- Compound Events (Addition Rule) 1
- Compound Events (Addition Rule) 2
- Venn Diagrams (Mutually Inclusive)
- Independent Events 1
- Independent Events 2
- Dependent Events (Conditional Probability)
- Probability Tree (Independent Events) 1
- Probability Tree (Independent Events) 2
- Probability Tree (Dependent Events)