Quotient Rule
Try VividMath Premium to unlock full access
Time limit: 0
Quiz summary
0 of 5 questions completed
Questions:
- 1
- 2
- 3
- 4
- 5
Information
–
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading...
You must sign in or sign up to start the quiz.
You have to finish following quiz, to start this quiz:
Loading...
- 1
- 2
- 3
- 4
- 5
- Answered
- Review
-
Question 1 of 5
1. Question
Find the derivative`y=x/(x^2+1)`Hint
Help VideoCorrect
Great Work!
Incorrect
Quotient Rule
$$\frac{dy}{dx}=\frac{\color{#9a00c7}{v}\color{#e65021}{du}-\color{#00880A}{u}\color{#004ec4}{dv}}{\color{#9a00c7}{v}^2}$$`y’=(dy)/dx``u’=``du``v’=``dv`First, find the derivative of `u` and `v`Derivative of `u`:`u` `=` `x` `u’` `=` `1` Power Rule Derivative of `v`:`v` `=` `x^2+1` `v’` `=` `2x` Power Rule Substitute the components into the quotient rule$$\frac{dy}{dx}$$ `=` $$\frac{\color{#9a00c7}{v}\color{#e65021}{du}-\color{#00880A}{u}\color{#004ec4}{dv}}{\color{#9a00c7}{v}^2}$$ `y’` `=` $$\frac{(\color{#9a00c7}{x^2+1}\cdot\color{#e65021}{1})-(\color{#00880A}{x}\cdot\color{#004ec4}{2x})}{(\color{#9a00c7}{x^2+1})^2}$$ Substitute known values `=` `(x^2+1-2x^2)/((x^2+1)^2)` Evaluate `=` `(1-x^2)/((x^2+1)^2)` Combine like terms `=` `((1-x)(1+x))/((x^2+1)^2)` Factorize `y’=((1-x)(1+x))/((x^2+1)^2)` -
Question 2 of 5
2. Question
Find the derivative`y=(x^2)/(2x+1)`Hint
Help VideoCorrect
Correct!
Incorrect
Quotient Rule
$$\frac{dy}{dx}=\frac{\color{#9a00c7}{v}\color{#e65021}{du}-\color{#00880A}{u}\color{#004ec4}{dv}}{\color{#9a00c7}{v}^2}$$`y’=(dy)/dx``u’=``du``v’=``dv`First, find the derivative of `u` and `v`Derivative of `u`:`u` `=` `x^2` `u’` `=` `2x` Power Rule Derivative of `v`:`v` `=` `2x+1` `v’` `=` `2` Power Rule Substitute the components into the quotient rule$$\frac{dy}{dx}$$ `=` $$\frac{\color{#9a00c7}{v}\color{#e65021}{du}-\color{#00880A}{u}\color{#004ec4}{dv}}{\color{#9a00c7}{v}^2}$$ $$y’$$ `=` $$\frac{(\color{#9a00c7}{2x+1}\cdot\color{#e65021}{2x})-(\color{#00880A}{x^2}\cdot\color{#004ec4}{2})}{(\color{#9a00c7}{2x+1})^2}$$ Substitute known values `=` `(4x^2+2x-2x^2)/((2x+1)^2)` Evaluate `=` `(2x^2+2x)/((2x+1)^2)` Combine like terms `=` `(2x(x+1))/((2x+1)^2)` Factorize `y’=(2x(x+1))/((2x+1)^2)` -
Question 3 of 5
3. Question
Find the derivative`y=(x^2-4)/(x-1)`Hint
Help VideoCorrect
Keep Going!
Incorrect
Quotient Rule
$$\frac{dy}{dx}=\frac{\color{#9a00c7}{v}\color{#e65021}{du}-\color{#00880A}{u}\color{#004ec4}{dv}}{\color{#9a00c7}{v}^2}$$`y’=(dy)/dx``u’=``du``v’=``dv`First, find the derivative of `u` and `v`Derivative of `u`:`u` `=` `x^2-4` `u’` `=` `2x` Power Rule Derivative of `v`:`v` `=` `x-1` `v’` `=` `1` Power Rule Substitute the components into the quotient rule$$\frac{dy}{dx}$$ `=` $$\frac{\color{#9a00c7}{v}\color{#e65021}{du}-\color{#00880A}{u}\color{#004ec4}{dv}}{\color{#9a00c7}{v}^2}$$ `y’` `=` $$\frac{(\color{#9a00c7}{x-1}\cdot\color{#e65021}{2x})-(\color{#00880A}{x^2-4}\cdot\color{#004ec4}{1})}{(\color{#9a00c7}{x-1})^2}$$ Substitute known values `=` `(2x(x-1)-x^2+4)/((x-1)^2)` Evaluate `=` `(2x^2-2x+x^2+4)/((x-1)^2)` Distribute `=` `(x^2-2x+4)/((x-1)^2)` Combine like terms `y’=(x^2-2x+4)/((x-1)^2)` -
Question 4 of 5
4. Question
Find the derivative`y=(4x^3-5x+3)/(x^3-1)`Hint
Help VideoCorrect
Fantastic!
Incorrect
Quotient Rule
$$\frac{dy}{dx}=\frac{\color{#9a00c7}{v}\color{#e65021}{du}-\color{#00880A}{u}\color{#004ec4}{dv}}{\color{#9a00c7}{v}^2}$$`y’=(dy)/dx``u’=``du``v’=``dv`First, find the derivative of `u` and `v`Derivative of `u`:`u` `=` `4x^3-5x+3` `u’` `=` `12x^2-5` Power Rule Derivative of `v`:`v` `=` `x^3-1` `v’` `=` `3x^2` Power Rule Substitute the components into the quotient rule$$\frac{dy}{dx}$$ `=` $$\frac{\color{#9a00c7}{v}\color{#e65021}{du}-\color{#00880A}{u}\color{#004ec4}{dv}}{\color{#9a00c7}{v}^2}$$ `y’` `=` $$\frac{(\color{#9a00c7}{x^3-1}\cdot\color{#e65021}{12x^2-5})-(\color{#00880A}{4x^3-5x+3}\cdot\color{#004ec4}{3x^2})}{(\color{#9a00c7}{x^3-1})^2}$$ Substitute known values `=` `(12x^5-5x^3-12x^2+5-12x^5+15x^3-9x^2)/((x^3-1)^2)` Evaluate `=` `(10x^3-21x^2+5)/((x^3-1)^2)` Combine like terms `y’=(10x^3-21x^2+5)/((x^3-1)^2)` -
Question 5 of 5
5. Question
Find the derivative`y=(sqrt(2x+1))/(3x-2)`Hint
Help VideoCorrect
Excellent!
Incorrect
Quotient Rule
$$\frac{dy}{dx}=\frac{\color{#9a00c7}{v}\color{#e65021}{du}-\color{#00880A}{u}\color{#004ec4}{dv}}{\color{#9a00c7}{v}^2}$$`y’=(dy)/dx``u’=``du``v’=``dv`First, convert the surd into an exponent.`(sqrt(2x+1))/(3x-2)` `=` `((2x+1)^(1/2))/(3x-2)` Next, find the derivative of `u` and `v`Derivative of `u`:`u` `=` `(2x+1)^(1/2)` `u’` `=` `(2x+1)^(-1/2)` Chain Rule Derivative of `v`:`v` `=` `3x-2` `v’` `=` `3` Power Rule Substitute the components into the quotient rule$$\frac{dy}{dx}$$ `=` $$\frac{\color{#9a00c7}{v}\color{#e65021}{du}-\color{#00880A}{u}\color{#004ec4}{dv}}{\color{#9a00c7}{v}^2}$$ `y’` `=` $$\frac{(\color{#9a00c7}{3x-2}\cdot\color{#e65021}{(2x+1)^{-\frac{1}{2}}})-(\color{#00880A}{(2x+1)^{\frac{1}{2}}}\cdot\color{#004ec4}{3})}{(\color{#9a00c7}{3x-2})^2}$$ Substitute known values `=` `(((3x-2)(2x+1)^(-1/2))-3((2x+1)^(1/2)))/((3x-2)^2)` Further simplify the numerator`((3x-2)(2x+1)^(-1/2))-3((2x+1)^(1/2))` `=` `(3x-2)/(sqrt(2x+1))-3sqrt(2x+1)` Convert the exponents into surds `=` `((3x-2)-3(2x+1))/(sqrt(2x+1))` Find the common denominator `=` `(3x-2-6x-3)/(sqrt(2x+1))` Distribute `=` `(-3x-5)/(sqrt(2x+1))` Combine like terms Finally, combine the simplified numerator to the denominator.`(-3x-5)/(sqrt(2x+1))xx 1/((3x-2)^2)` `=` `(-3x-5)/(sqrt(2x+1)(3x-2)^2)` `y’=(-3x-5)/(sqrt(2x+1)(3x-2)^2)`