Years
>
Year 11>
Trigonometric Identities>
Proving Trigonometric Identities>
Proving Trigonometric IdentitiesProving Trigonometric Identities
Try VividMath Premium to unlock full access
Time limit: 0
Quiz summary
0 of 6 questions completed
Questions:
- 1
- 2
- 3
- 4
- 5
- 6
Information
–
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading...
You must sign in or sign up to start the quiz.
You have to finish following quiz, to start this quiz:
Loading...
- 1
- 2
- 3
- 4
- 5
- 6
- Answered
- Review
-
Question 1 of 6
1. Question
Identify if the equation is correctcosθ1-sinθ=secθ+tanθcosθ1−sinθ=secθ+tanθ- 1.
-
2.
IncorrectIncorrect
Hint
Help VideoCorrect
Great Work!
Incorrect
Need TextPlayCurrent Time 0:00/Duration Time 0:00Remaining Time -0:00Stream TypeLIVELoaded: 0%Progress: 0%0:00Fullscreen00:00MutePlayback Rate1x- 2x
- 1.5x
- 1.25x
- 1x
- 0.75x
- 0.5x
Subtitles- subtitles off
Captions- captions off
- English
Chapters- Chapters
Trigonometric Identities
secθ=1cosθsecθ=1cosθcscθ=1sinθcscθ=1sinθcotθ=1tanθcotθ=1tanθtanθ=sinθcosθtanθ=sinθcosθcotθ=cosθsinθcotθ=cosθsinθWork on changing the left side of the equation to make it equal to the value of the right sidecosθ1-sinθcosθ1−sinθ == cosθ⋅(1+sinθ)1−sinθ⋅(1+sinθ)cosθ⋅(1+sinθ)1−sinθ⋅(1+sinθ) Multiply the numerator and denominator by 1+sinθ1+sinθ == cosθ(1+sinθ)1-sin2θcosθ(1+sinθ)1−sin2θ Difference of two squares Recall that sin2θ+cos2θ=1sin2θ+cos2θ=1. Derive this formula to further simplify the expressionsin2θ+cos2θsin2θ+cos2θ == 11 sin2θ+cos2θsin2θ+cos2θ -sin2θ−sin2θ == 11 -sin2θ−sin2θ Subtract sin2θsin2θ from both sides cos2θcos2θ == 1-sin2θ1−sin2θ cosθ(1+sinθ)1-sin2θcosθ(1+sinθ)1−sin2θ == cosθ(1+sinθ)cos2θcosθ(1+sinθ)cos2θ 1-sin2θ=cos2θ1−sin2θ=cos2θ == 1+sinθcosθ1+sinθcosθ cosθcos2θ=1cosθcosθcos2θ=1cosθ == 1cosθ+sinθcosθ1cosθ+sinθcosθ Separate the values of the numerator == secθ+sinθcosθsecθ+sinθcosθ 1cosθ=secθ1cosθ=secθ == secθ+tanθsecθ+tanθ sinθcosθ=tanθsinθcosθ=tanθ This means that cosθ1-sinθ=secθ+tanθcosθ1−sinθ=secθ+tanθCorrectCorrect -
Question 2 of 6
2. Question
Identify if the equation is correctsinA1+cosA+1+cosAsinA=2cscAsinA1+cosA+1+cosAsinA=2cscA-
1.
IncorrectIncorrect -
2.
CorrectCorrect
Hint
Help VideoCorrect
Correct!
Incorrect
Need TextPlayCurrent Time 0:00/Duration Time 0:00Remaining Time -0:00Stream TypeLIVELoaded: 0%Progress: 0%0:00Fullscreen00:00MutePlayback Rate1x- 2x
- 1.5x
- 1.25x
- 1x
- 0.75x
- 0.5x
Subtitles- subtitles off
Captions- captions off
- English
Chapters- Chapters
Trigonometric Identities
secθ=1cosθsecθ=1cosθcscθ=1sinθcscθ=1sinθcotθ=1tanθcotθ=1tanθtanθ=sinθcosθtanθ=sinθcosθcotθ=cosθsinθcotθ=cosθsinθWork on changing the left side of the equation to make it equal to the value of the right sidesinA1+cosA+1+cosAsinAsinA1+cosA+1+cosAsinA == sin2A+(1+cosA)2(1+cosA)sinAsin2A+(1+cosA)2(1+cosA)sinA Apply the rule of adding fractions == sin2A+(1+cosA)(1+cosA)(1+cosA)sinAsin2A+(1+cosA)(1+cosA)(1+cosA)sinA Expand == sin2A+1+2cosA+cos2A(1+cosA)sinAsin2A+1+2cosA+cos2A(1+cosA)sinA Recall that sin2θ+cos2θ=1sin2θ+cos2θ=1. Derive this formula to further simplify the expressionsin2A+1+2cosA+cos2A(1+cosA)sinAsin2A+1+2cosA+cos2A(1+cosA)sinA == 1+1+2cosA(1+cosA)sinA1+1+2cosA(1+cosA)sinA sin2A+cos2A=1sin2A+cos2A=1 == 2+2cosA(1+cosA)sinA2+2cosA(1+cosA)sinA Combine like terms == 2(1+cosA)(1+cosA)sinA2(1+cosA)(1+cosA)sinA Factor out 22 == 2sinA2sinA 1+cosA1+cosA=11+cosA1+cosA=1 == 2cscA2cscA 1sinA=cscA1sinA=cscA This means that sinA1+cosA+1+cosAsinA=2cscAsinA1+cosA+1+cosAsinA=2cscACorrectCorrect -
1.
-
Question 3 of 6
3. Question
Identify if the equation is correct1+cotθcscθ-secθtanθ+cotθ=cosθ1+cotθcscθ−secθtanθ+cotθ=cosθ-
1.
IncorrectIncorrect -
2.
CorrectCorrect
Hint
Help VideoCorrect
Keep Going!
Incorrect
Need TextPlayCurrent Time 0:00/Duration Time 0:00Remaining Time -0:00Stream TypeLIVELoaded: 0%Progress: 0%0:00Fullscreen00:00MutePlayback Rate1x- 2x
- 1.5x
- 1.25x
- 1x
- 0.75x
- 0.5x
Subtitles- subtitles off
Captions- captions off
- English
Chapters- Chapters
Trigonometric Identities
secθ=1cosθsecθ=1cosθcscθ=1sinθcscθ=1sinθcotθ=1tanθcotθ=1tanθtanθ=sinθcosθtanθ=sinθcosθcotθ=cosθsinθcotθ=cosθsinθWork on changing the left side of the equation to make it equal to the value of the right sideFirst term1+cot θcsc θ1+cot θcsc θ == 1csc θ(1+cot θ) Factorise = sin θ(1+cot θ) 1csc θ=sin θ = sin θ(1+cos θsin θ) cot θ=cos θsin θ = sin θ+sin θ⋅cos θsin θ Expand = sin θ+cos θ sin θsin θ=1 Second termsec θtan θ+cot θ = 1cos θtan θ+cot θ sec θ=1cos θ = 1cos θsin θcos θ+cot θ tan θ=sin θcos θ = 1cos θsin θcos θ+cos θsin θ cot θ=cos θsin θ = 1cos θsin2θ+cos2θcos θ sin θ Apply rule of adding fractions to the denominator = 1cos θ1cos θ sin θ sin2θ+cos2θ=1 = 1cos θ⋅cos θ sin θ1 Apply rule of dividing fractions = sin θ Finally, combine the two terms and subtractsin θ+cos θ-sin θ = cos θ This means that 1+cot θcsc θ-sec θtan θ+cot θ=cos θCorrect -
1.
-
Question 4 of 6
4. Question
Identify if the equation is correcttanθ(1-cot2θ)+cotθ(1-tan2θ)=0-
1.
Correct -
2.
Incorrect
Hint
Help VideoCorrect
Fantastic!
Incorrect
Need TextPlayCurrent Time 0:00/Duration Time 0:00Remaining Time -0:00Stream TypeLIVELoaded: 0%Progress: 0%0:00Fullscreen00:00MutePlayback Rate1x- 2x
- 1.5x
- 1.25x
- 1x
- 0.75x
- 0.5x
Subtitles- subtitles off
Captions- captions off
- English
Chapters- Chapters
Trigonometric Identities
secθ=1cosθcscθ=1sinθcotθ=1tanθtanθ=sinθcosθcotθ=cosθsinθWork on changing the left side of the equation to make it equal to the value of the right sideFirst termtan θ(1-cot2θ) = tan θ-(tan θ⋅cot2θ) Expand = tan θ-(sin θcos θ⋅cot2θ) tan θ=sin θcos θ = tan θ-(sin θcos θ⋅cos2θsin2θ) cot2θ=cos2θsin2θ = tan θ-(cos θsin θ) Simplify = tan θ-cot θ cos θsin θ=cot θ Second termcot θ(1-tan2θ) = cot θ-(cot θ⋅tan2θ) Expand = cot θ-(cos θsin θ⋅tan2θ) cot θ=cos θsin θ = cot θ-(cos θsin θ⋅sin2θcos2θ) tan2θ=sin2θcos2θ = cot θ-(sin θcos θ) Simplify = cot θ-tan θ sin θcos θ=tan θ Finally, combine the two terms and addtan θ-cot θ+cot θ-tan θ = 0 This means that tan θ(1-cot2θ)+cot θ(1-tan2θ)=0Correct -
1.
-
Question 5 of 6
5. Question
Identify if the equation is correctcsc4A-cot4A=1+cos2Asin2A-
1.
Correct -
2.
Incorrect
Hint
Help VideoCorrect
Excellent!
Incorrect
Need TextPlayCurrent Time 0:00/Duration Time 0:00Remaining Time -0:00Stream TypeLIVELoaded: 0%Progress: 0%0:00Fullscreen00:00MutePlayback Rate1x- 2x
- 1.5x
- 1.25x
- 1x
- 0.75x
- 0.5x
Subtitles- subtitles off
Captions- captions off
- English
Chapters- Chapters
Trigonometric Identities
secθ=1cosθcscθ=1sinθcotθ=1tanθtanθ=sinθcosθcotθ=cosθsinθWork on changing the left side of the equation to make it equal to the value of the right sidecsc4A-cot4A = (csc2A-cot2A)(csc2A+cot2A) Factorise = [csc2A-(csc2A-1)][csc2A+(csc2A-1)] cot2A=csc2A-1 = (csc2A-csc2A+1)(csc2A+csc2A-1) Adjust the subtracting values = (1)(2csc2A-1) Combine like terms = (1)(2⋅1sin2A-1) csc2A=1sin2A = 2-sin2Asin2A Apply rule of subtracting fractions = 2-(1-cos2A)sin2A sin2A=1-cos2A = 2-1+cos2Asin2A Adjust the subtracting values = 1+cos2Asin2A This means that csc4A-cot4A=1+cos2Asin2ACorrect -
1.
-
Question 6 of 6
6. Question
Identify if the equation is correctsin2θ-tan2θ1-sec2θ=sin2θ-
1.
Incorrect -
2.
Correct
Hint
Help VideoCorrect
Nice Job!
Incorrect
Need TextPlayCurrent Time 0:00/Duration Time 0:00Remaining Time -0:00Stream TypeLIVELoaded: 0%Progress: 0%0:00Fullscreen00:00MutePlayback Rate1x- 2x
- 1.5x
- 1.25x
- 1x
- 0.75x
- 0.5x
Subtitles- subtitles off
Captions- captions off
- English
Chapters- Chapters
Trigonometric Identities
secθ=1cosθcscθ=1sinθcotθ=1tanθtanθ=sinθcosθcotθ=cosθsinθWork on changing the left side of the equation to make it equal to the value of the right sidesin2θ-tan2θ1-sec2θ = sin2θ-tan2θ-tan2θ 1-sec2θ=-tan2θ = sin2θ-tan2θ-tan2θ-tan2θ Separate the numerators = sin2θsin2θcos2θ+1 tan2θ=sin2θcos2θ = -cos2θ+1 = 1-cos2θ = sin2θ 1-cos2θ=sin2θ This means that sin2θ-tan2θ1-sec2θ=sin2θCorrect -
1.