Years
>
Year 11>
Trigonometric Identities>
Proving Trigonometric Identities>
Proving Trigonometric IdentitiesProving Trigonometric Identities
Try VividMath Premium to unlock full access
Time limit: 0
Quiz summary
0 of 6 questions completed
Questions:
- 1
- 2
- 3
- 4
- 5
- 6
Information
–
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading...
You must sign in or sign up to start the quiz.
You have to finish following quiz, to start this quiz:
Loading...
- 1
- 2
- 3
- 4
- 5
- 6
- Answered
- Review
-
Question 1 of 6
1. Question
Identify if the equation is correct`(cos theta)/(1-sin theta)=sec theta+tan theta`Hint
Help VideoCorrect
Great Work!
Incorrect
Trigonometric Identities
$$\sec\theta=\frac{1}{\text{cos}\theta}$$$$\csc\theta=\frac{1}{\text{sin}\theta}$$$$\cot\theta=\frac{1}{\text{tan}\theta}$$$$\tan\theta=\frac{\text{sin}\theta}{\text{cos}\theta}$$$$\cot\theta=\frac{\text{cos}\theta}{\text{sin}\theta}$$Work on changing the left side of the equation to make it equal to the value of the right side`(\text(cos) theta)/(1-\text(sin) theta)` `=` $$\frac{\text{cos}\;\theta\cdot(\color{#CC0000}{1+\text{sin}\;\theta})}{1-\text{sin}\;\theta\cdot(\color{#CC0000}{1+\text{sin}\;\theta})}$$ Multiply the numerator and denominator by `1+\text(sin) theta` `=` `(\text(cos) theta(1+\text(sin) theta))/(1-\text(sin)^2 theta)` Difference of two squares Recall that `\text(sin)^2theta+\text(cos)^2theta=1`. Derive this formula to further simplify the expression`\text(sin)^2theta+\text(cos)^2theta` `=` `1` `\text(sin)^2theta+\text(cos)^2theta` `-\text(sin)^2theta` `=` `1` `-\text(sin)^2theta` Subtract `\text(sin)^2theta` from both sides `\text(cos)^2theta` `=` `1-\text(sin)^2theta` `(\text(cos) theta(1+\text(sin) theta))/(1-\text(sin)^2 theta)` `=` `(\text(cos) theta(1+\text(sin) theta))/(\text(cos)^2theta)` `1-\text(sin)^2theta=\text(cos)^2theta` `=` `(1+\text(sin) theta)/(\text(cos) theta)` `(\text(cos) theta)/(\text(cos)^2theta)=1/(\text(cos) theta)` `=` `1/(\text(cos) theta)+(\text(sin) theta)/(\text(cos)theta)` Separate the values of the numerator `=` `\text(sec)theta+(\text(sin) theta)/(\text(cos)theta)` `1/(\text(cos) theta)=\text(sec)theta` `=` `\text(sec)theta+\text(tan)theta` `(\text(sin) theta)/(\text(cos)theta)=\text(tan)theta` This means that `(\text(cos) theta)/(1-\text(sin) theta)=\text(sec) theta+\text(tan) theta``\text(Correct)` -
Question 2 of 6
2. Question
Identify if the equation is correct`(sin A)/(1+cos A)+(1+cos A)/(sin A)=2 csc A`Hint
Help VideoCorrect
Correct!
Incorrect
Trigonometric Identities
$$\sec\theta=\frac{1}{\text{cos}\theta}$$$$\csc\theta=\frac{1}{\text{sin}\theta}$$$$\cot\theta=\frac{1}{\text{tan}\theta}$$$$\tan\theta=\frac{\text{sin}\theta}{\text{cos}\theta}$$$$\cot\theta=\frac{\text{cos}\theta}{\text{sin}\theta}$$Work on changing the left side of the equation to make it equal to the value of the right side`(\text(sin) A)/(1+\text(cos) A)+(1+\text(cos) A)/(\text(sin) A)` `=` `(\text(sin)^2A+(1+\text(cos) A)^2)/((1+\text(cos) A)\text(sin) A)` Apply the rule of adding fractions `=` `(\text(sin)^2A+(1+\text(cos) A)(1+\text(cos) A))/((1+\text(cos) A)\text(sin) A)` Expand `=` `(\text(sin)^2A+1+2\text(cos) A+\text(cos)^2A)/((1+\text(cos) A)\text(sin) A)` Recall that `\text(sin)^2theta+\text(cos)^2theta=1`. Derive this formula to further simplify the expression`(\text(sin)^2A+1+2\text(cos) A+\text(cos)^2A)/((1+\text(cos) A)\text(sin) A)` `=` `(1+1+2\text(cos) A)/((1+\text(cos) A)\text(sin) A)` `\text(sin)^2A+\text(cos)^2A=1` `=` `(2+2\text(cos) A)/((1+\text(cos) A)\text(sin) A)` Combine like terms `=` `(2(1+\text(cos) A))/((1+\text(cos) A)\text(sin) A)` Factor out `2` `=` `2/(\text(sin) A)` `(1+\text(cos) A)/(1+\text(cos) A)=1` `=` `2\text(csc) A` `1/(\text(sin) A)=\text(csc) A` This means that `(sin A)/(1+cos A)+(1+cos A)/(sin A)=2 csc A``\text(Correct)` -
Question 3 of 6
3. Question
Identify if the equation is correct`(1+cot theta)/(csc theta)-(sec theta)/(tan theta+cot theta)=cos theta`Hint
Help VideoCorrect
Keep Going!
Incorrect
Trigonometric Identities
$$\sec\theta=\frac{1}{\text{cos}\theta}$$$$\csc\theta=\frac{1}{\text{sin}\theta}$$$$\cot\theta=\frac{1}{\text{tan}\theta}$$$$\tan\theta=\frac{\text{sin}\theta}{\text{cos}\theta}$$$$\cot\theta=\frac{\text{cos}\theta}{\text{sin}\theta}$$Work on changing the left side of the equation to make it equal to the value of the right sideFirst term`(1+\text(cot) theta)/(\text(csc) theta)` `=` `1/(\text(csc) theta)(1+\text(cot) theta)` Factorise `=` `\text(sin) theta(1+\text(cot) theta)` `1/(\text(csc) theta)=\text(sin) theta` `=` `\text(sin) theta(1+(\text(cos) theta)/(\text(sin) theta))` `\text(cot) theta=(\text(cos) theta)/(\text(sin) theta)` `=` `\text(sin) theta+(\text(sin) theta*\text(cos) theta)/(\text(sin) theta)` Expand `=` `\text(sin) theta+\text(cos) theta` `(\text(sin) theta)/(\text(sin) theta)=1` Second term`(\text(sec) theta)/(\text(tan) theta+\text(cot) theta)` `=` `(1/(\text(cos) theta))/(\text(tan) theta+\text(cot) theta)` `\text(sec) theta=1/(\text(cos) theta)` `=` `(1/(\text(cos) theta))/((\text(sin) theta)/(\text(cos) theta)+\text(cot) theta)` `\text(tan) theta=(\text(sin) theta)/(\text(cos) theta)` `=` `(1/(\text(cos) theta))/((\text(sin) theta)/(\text(cos) theta)+(\text(cos) theta)/(\text(sin) theta)` `\text(cot) theta=(\text(cos) theta)/(\text(sin) theta)` `=` `(1/(\text(cos) theta))/((\text(sin)^2theta+\text(cos)^2theta)/(\text(cos) theta \text(sin) theta)` Apply rule of adding fractions to the denominator `=` `(1/(\text(cos) theta))/(1/(\text(cos) theta \text(sin) theta)` `\text(sin)^2theta+\text(cos)^2theta=1` `=` `1/(\text(cos) theta)*(\text(cos) theta \text(sin) theta)/1` Apply rule of dividing fractions `=` `\text(sin) theta` Finally, combine the two terms and subtract`\text(sin) theta+\text(cos) theta``-``\text(sin) theta` `=` `\text(cos) theta` This means that `(1+\text(cot) theta)/(\text(csc) theta)-(\text(sec) theta)/(\text(tan) theta+\text(cot) theta)=\text(cos) theta``\text(Correct)` -
Question 4 of 6
4. Question
Identify if the equation is correct`tan theta(1-cot^2theta)+cot theta(1-tan^2theta)=0`Hint
Help VideoCorrect
Fantastic!
Incorrect
Trigonometric Identities
$$\sec\theta=\frac{1}{\text{cos}\theta}$$$$\csc\theta=\frac{1}{\text{sin}\theta}$$$$\cot\theta=\frac{1}{\text{tan}\theta}$$$$\tan\theta=\frac{\text{sin}\theta}{\text{cos}\theta}$$$$\cot\theta=\frac{\text{cos}\theta}{\text{sin}\theta}$$Work on changing the left side of the equation to make it equal to the value of the right sideFirst term`\text(tan) theta(1-\text(cot)^2theta)` `=` `\text(tan) theta-(\text(tan) theta*\text(cot)^2theta)` Expand `=` `\text(tan) theta-((\text(sin) theta)/(\text(cos) theta)*\text(cot)^2theta)` `\text(tan) theta=(\text(sin) theta)/(\text(cos) theta)` `=` `\text(tan) theta-((\text(sin) theta)/(\text(cos) theta)*(\text(cos)^2theta)/(\text(sin)^2theta))` `\text(cot)^2theta=(\text(cos)^2theta)/(\text(sin)^2theta)` `=` `\text(tan) theta-((\text(cos) theta)/(\text(sin) theta))` Simplify `=` `\text(tan) theta-\text(cot) theta` `(\text(cos) theta)/(\text(sin) theta)=\text(cot) theta` Second term`\text(cot) theta(1-\text(tan)^2theta)` `=` `\text(cot) theta-(\text(cot) theta*\text(tan)^2theta)` Expand `=` `\text(cot) theta-((\text(cos) theta)/(\text(sin) theta)*\text(tan)^2theta)` `\text(cot) theta=(\text(cos) theta)/(\text(sin) theta)` `=` `\text(cot) theta-((\text(cos) theta)/(\text(sin) theta)*(\text(sin)^2theta)/(\text(cos)^2theta))` `\text(tan)^2theta=(\text(sin)^2theta)/(\text(cos)^2theta)` `=` `\text(cot) theta-((\text(sin) theta)/(\text(cos) theta))` Simplify `=` `\text(cot) theta-\text(tan) theta` `(\text(sin) theta)/(\text(cos) theta)=\text(tan) theta` Finally, combine the two terms and add`\text(tan) theta-\text(cot) theta``+``\text(cot) theta-\text(tan) theta` `=` `0` This means that `\text(tan) theta(1-\text(cot)^2theta)+\text(cot) theta(1-\text(tan)^2theta)=0``\text(Correct)` -
Question 5 of 6
5. Question
Identify if the equation is correct`csc^4A-cot^4A=(1+cos^2A)/(sin^2A)`Hint
Help VideoCorrect
Excellent!
Incorrect
Trigonometric Identities
$$\sec\theta=\frac{1}{\text{cos}\theta}$$$$\csc\theta=\frac{1}{\text{sin}\theta}$$$$\cot\theta=\frac{1}{\text{tan}\theta}$$$$\tan\theta=\frac{\text{sin}\theta}{\text{cos}\theta}$$$$\cot\theta=\frac{\text{cos}\theta}{\text{sin}\theta}$$Work on changing the left side of the equation to make it equal to the value of the right side`\text(csc)^4A-\text(cot)^4A` `=` `(\text(csc)^2A-\text(cot)^2A)(\text(csc)^2A+\text(cot)^2A)` Factorise `=` `[\text(csc)^2A-(\text(csc)^2A-1)][\text(csc)^2A+(\text(csc)^2A-1)]` `\text(cot)^2A=\text(csc)^2A-1` `=` `(\text(csc)^2A-\text(csc)^2A+1)(\text(csc)^2A+\text(csc)^2A-1)` Adjust the subtracting values `=` `(1)(2\text(csc)^2A-1)` Combine like terms `=` `(1)(2*1/(\text(sin)^2A)-1)` `\text(csc)^2A=1/(\text(sin)^2A)` `=` `(2-\text(sin)^2A)/(\text(sin)^2A)` Apply rule of subtracting fractions `=` `(2-(1-\text(cos)^2A))/(\text(sin)^2A)` `\text(sin)^2A=1-\text(cos)^2A` `=` `(2-1+\text(cos)^2A)/(\text(sin)^2A)` Adjust the subtracting values `=` `(1+\text(cos)^2A)/(\text(sin)^2A)` This means that `\text(csc)^4A-\text(cot)^4A=(1+\text(cos)^2A)/(\text(sin)^2A)``\text(Correct)` -
Question 6 of 6
6. Question
Identify if the equation is correct`(sin^2theta-tan^2theta)/(1-sec^2theta)=sin^2theta`Hint
Help VideoCorrect
Nice Job!
Incorrect
Trigonometric Identities
$$\sec\theta=\frac{1}{\text{cos}\theta}$$$$\csc\theta=\frac{1}{\text{sin}\theta}$$$$\cot\theta=\frac{1}{\text{tan}\theta}$$$$\tan\theta=\frac{\text{sin}\theta}{\text{cos}\theta}$$$$\cot\theta=\frac{\text{cos}\theta}{\text{sin}\theta}$$Work on changing the left side of the equation to make it equal to the value of the right side`(\text(sin)^2theta-\text(tan)^2theta)/(1-\text(sec)^2theta)` `=` `(\text(sin)^2theta-\text(tan)^2theta)/(-\text(tan)^2theta)` `1-\text(sec)^2theta=-\text(tan)^2theta` `=` `(\text(sin)^2theta)/(-\text(tan)^2theta)-(\text(tan)^2theta)/(-\text(tan)^2theta)` Separate the numerators `=` `(\text(sin)^2theta)/((\text(sin)^2theta)/(\text(cos)^2theta))+1` `\text(tan)^2theta=(\text(sin)^2theta)/(\text(cos)^2theta)` `=` `-\text(cos)^2theta+1` `=` `1-\text(cos)^2theta` `=` `\text(sin)^2theta` `1-\text(cos)^2theta=\text(sin)^2theta` This means that `(\text(sin)^2theta-\text(tan)^2theta)/(1-\text(sec)^2theta)=\text(sin)^2theta``\text(Correct)`