Indefinite Integrals 3
Try VividMath Premium to unlock full access
Time limit: 0
Quiz summary
0 of 5 questions completed
Questions:
- 1
- 2
- 3
- 4
- 5
Information
–
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading...
You must sign in or sign up to start the quiz.
You have to finish following quiz, to start this quiz:
Loading...
- 1
- 2
- 3
- 4
- 5
- Answered
- Review
-
Question 1 of 5
1. Question
Integrate`int {x^3+4} /x^3 dx`Hint
Help VideoCorrect
Fantastic!
Incorrect
Integration Formula
$$\int x^{\color{#004ec4}{n}} dx=\frac{x^{\color{#004ec4}{n}+1}}{\color{#004ec4}{n}+1}+c$$Sum or Difference Rule
$$ \int (f(x) \pm g(x))dx = \int f(x)dx \pm \int g(x)dx = F(x) \pm G(x) + c $$Addition of Fractions Rule
`(a+b)/c=a/c+b/c`Apply the Addition of Fractions Rule`int {x^3+4}/x^3dx` `=` `int(x^3/x^3+4/x^3)dx` `=` `int(1+4/x^3)dx` Use the Sum or Difference Rule`int(1+4/x^3)dx` `=` `int 1dx+int 4/x^3dx` Find the Indefinite Integral`int 1dx+int 4/x^3dx` `=` $$\int x^{\color{#004ec4}{0}}dx+\int 4x^{\color{#004ec4}{-3}}dx$$ Take the constant `4` out of the integral sign `=` $$\int x^{\color{#004ec4}{0}}dx+4\int x^{\color{#004ec4}{-3}}dx$$ `=` $$\frac{x^{\color{#004ec4}{0}+1}}{\color{#004ec4}{0}+1}+4\frac{x^{\color{#004ec4}{-3}+1}}{\color{#004ec4}{-3}+1}+c$$ Apply the Integration Formula `=` `x^1/1+4x^{-2}/{-2}+c` `=` $$x+4(-\frac{1}{2})x^{-2}+c$$ `=` `x-2x^{-2}+c` Simplify `=` `x-2/x^{2}+c` Apply Negative Indice law `x-2/x^2+c` -
Question 2 of 5
2. Question
Integrate`int3/(6-x)^4dx`Hint
Help VideoCorrect
Keep Going!
Incorrect
Integration Formula
$$\int f(x)^{\color{#004ec4}{n}} dx=\frac{f(x)^{\color{#004ec4}{n}+1}}{(\color{#004ec4}{n}+1)f'(x)}+c$$`int 3/(6-x)^4dx` can be written as `int 3(6-x)^{-4}dx`Find the Indefinite Integral$$\int 3(6-x)^{\color{#004ec4}{-4}}dx$$ `=` $$3\int(6-x)^{\color{#004ec4}{-4}}dx$$ Take the constant `3` out of the integral sign `=` $$3\frac{(6-x)^{\color{#004ec4}{-4}+1}}{(\color{#004ec4}{-4}+1)(6-x)’}+c$$ Apply the Integration Formula `=` $$3\frac{(6-x)^{\color{#004ec4}{-3}}}{(\color{#004ec4}{-3})(-1)}+c$$ `=` $$(6-x)^{-3}+c$$ Simplify `=` `1/(6-x)^3+c` Apply Negative Indice law `1/(6-x)^3+c` -
Question 3 of 5
3. Question
Integrate`int 1/(x^4) dx`Hint
Help VideoCorrect
Exceptional!
Incorrect
Integration Formula
$$\int x^{\color{#004ec4}{n}} dx=\frac{x^{\color{#004ec4}{n}+1}}{\color{#004ec4}{n}+1}+c$$Remove the fraction by expressing the term using negative exponents`int 1/x^4 dx` `=` $$\int x^{\color{#004ec4}{-4}} dx$$ Find the Indefinite Integral$$\int x^{\color{#004ec4}{-4}} dx$$ `=` $$\frac{x^{\color{#004ec4}{-4}+1}}{\color{#004ec4}{-4}+1}+c$$ Apply the Integration Formula `=` `(x^(-3))/(-3) +c` `=` `-1/(3x^3) + c` Apply Negative Indice law `-1/(3x^3) + c` -
Question 4 of 5
4. Question
Integrate`int 2/(3 sqrt(x)) dx`Hint
Help VideoCorrect
Well Done!
Incorrect
Integration Formula
$$\int x^{\color{#004ec4}{n}} dx=\frac{x^{\color{#004ec4}{n}+1}}{\color{#004ec4}{n}+1}+c$$`int 2/{3sqrt{x}}dx` can be written as `int 2/3 x^{-1/2}dx`Find the Indefinite Integral$$\int{\frac{2}{3}x^{-\frac{1}{2}}}dx $$ `=` $$\frac{2}{3}\int{x^{-\frac{1}{2}}}dx$$ Take the constant `2/3` out of the integral sign `=` $$\frac{2}{3}\frac{x^{\color{#004ec4}{-\frac{1}{2}}+1}}{(\color{#004ec4}{-\frac{1}{2}}+1)}+c$$ Apply the Integration Formula `=` $$\frac{2}{3}\frac{x^{\color{#004ec4}{\frac{1}{2}}}}{\color{#004ec4}{\frac{1}{2}}}+c$$ `=` $$\frac{2}{3}(2)x^\frac{1}{2}+c$$ `=` $$\frac{4}{3}x^{\frac{1}{2}}+c$$ Simplify `=` $$\frac{4}{3}\sqrt{x}+c$$ Convert into surd form $$\frac{4}{3}\sqrt{x}+c$$ -
Question 5 of 5
5. Question
Integrate`int 3/sqrt(2x-3) dx`Hint
Help VideoCorrect
Keep Going!
Incorrect
Integration Formula
$$\int f(x)^{\color{#004ec4}{n}} dx=\frac{f(x)^{\color{#004ec4}{n}+1}}{(\color{#004ec4}{n}+1)f'(x)}+c$$`int 3/sqrt{2x-3}dx` can be written as `int 3(2x-3)^{-1/2}dx`Find the Indefinite Integral$$\int3(2x-3)^{\color{#004ec4}{-\frac{1}{2}}}dx$$ `=` $$3\int(2x-3)^{\color{#004ec4}{-\frac{1}{2}}}dx$$ Take the constant `3` out of the integral sign `=` $$3\frac{(2x-3)^{\color{#004ec4}{-\frac{1}{2}}+1}}{(\color{#004ec4}{-\frac{1}{2}}+1)(2x-3)’}+c$$ Apply the Integration Formula `=` $$3\frac{(2x-3)^{\color{#004ec4}{\frac{1}{2}}}}{\color{#004ec4}{\frac{1}{2}}\times 2}+c$$ `=` `3 (2x-3)^{1/2}+c` Simplify `=` `3 sqrt{2x-3}+c` Convert into surd form `3 sqrt{2x-3}+c`
Quizzes
- Indefinite Integrals 1
- Indefinite Integrals 2
- Indefinite Integrals 3
- Definite Integrals
- Areas Between Curves and the Axis 1
- Areas Between Curves and the Axis 2
- The Area Between Curves
- Volumes of Revolution 1
- Volumes of Revolution 2
- Volumes of Revolution 3
- Trapezoidal Rule
- Simpsons Rule
- Integral of a Trigonometric Function 1
- Integral of a Trigonometric Function 2
- Applications of Integration for Trig Functions