Fractional Indices 1
Try VividMath Premium to unlock full access
Time limit: 0
Quiz summary
0 of 6 questions completed
Questions:
- 1
- 2
- 3
- 4
- 5
- 6
Information
–
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading...
You must sign in or sign up to start the quiz.
You have to finish following quiz, to start this quiz:
Loading...
- 1
- 2
- 3
- 4
- 5
- 6
- Answered
- Review
-
Question 1 of 6
1. Question
Simplify`a^(T/B)`Hint
Help VideoCorrect
Simplify`64^(2/3)`Incorrect
Identify the known lengths
`\text(Base)=a``\text(Numerator/Top)=T``\text(Denominator/Bottom)=B`To simplify a fractional power, use the denominator/bottom value `B` as a root and use the numerator/top value `T` as the power.$$a^{\frac{\color{#004ec4}{T}}{\color{#D800AD}{B}}}$$ `=` $$\sqrt[\color{#D800AD}{B}]{a^{\color{#004ec4}{T}}}$$ To remember this easily, take note that `B` comes before `T` alphabetically. This means that `B` will be at the left side(the root) and `T` will be at the right side (the power).`root(B)(a^T)` can also be written as `(root(B)(a))^T``root(B)(a^T)` -
Question 2 of 6
2. Question
Simplify`64^(2/3)`- (16)
Hint
Help VideoCorrect
Keep Going!
Incorrect
Fractional Powers
$$a^{\frac{\color{#004ec4}{T}}{\color{#D800AD}{B}}}=(\sqrt[\color{#D800AD}{B}]{a})^{\color{#004ec4}{T}}$$Use Fractional Powers to simplify the expression.$$64^{\frac{\color{#004ec4}{2}}{\color{#D800AD}{3}}}$$ `=` $$(\sqrt[\color{#D800AD}{3}]{64})^{\color{#004ec4}{2}}$$ `=` `(4)^2` `root (3)(64)=4` `=` `16` `16` -
Question 3 of 6
3. Question
Simplify`27^(1/3)`- (3)
Hint
Help VideoCorrect
Correct!
Incorrect
Fractional Powers
$$a^{\frac{\color{#004ec4}{T}}{\color{#D800AD}{B}}}=(\sqrt[\color{#D800AD}{B}]{a})^{\color{#004ec4}{T}}$$Use Fractional Powers to simplify the expression.$$27^{\frac{\color{#004ec4}{1}}{\color{#D800AD}{3}}}$$ `=` $$(\sqrt[\color{#D800AD}{3}]{27})^{\color{#004ec4}{1}}$$ `=` `(3)^1` `root (3)(27)=3` `=` `3` `3` -
Question 4 of 6
4. Question
Simplify`9^(1/2)`- (3)
Hint
Help VideoCorrect
Keep Going!
Incorrect
Fractional Powers
$$a^{\frac{\color{#004ec4}{T}}{\color{#D800AD}{B}}}=(\sqrt[\color{#D800AD}{B}]{a})^{\color{#004ec4}{T}}$$Use Fractional Powers to simplify the expression.$$9^{\frac{\color{#004ec4}{1}}{\color{#D800AD}{2}}}$$ `=` $$(\sqrt[\color{#D800AD}{2}]{9})^{\color{#004ec4}{1}}$$ `=` `(3)^1` `root (2)(9)=3` `=` `3` `3` -
Question 5 of 6
5. Question
Simplify`25^(3/2)`- (125)
Hint
Help VideoCorrect
Fantastic!
Incorrect
Fractional Powers
$$a^{\frac{\color{#004ec4}{T}}{\color{#D800AD}{B}}}=(\sqrt[\color{#D800AD}{B}]{a})^{\color{#004ec4}{T}}$$Use Fractional Powers to simplify the expression.$$25^{\frac{\color{#004ec4}{3}}{\color{#D800AD}{2}}}$$ `=` $$(\sqrt[\color{#D800AD}{2}]{25})^{\color{#004ec4}{3}}$$ `=` `(5)^3` `root (2)(25)=5` `=` `125` `125` -
Question 6 of 6
6. Question
Simplify`9^(3/2)`- (27)
Hint
Help VideoCorrect
Excellent!
Incorrect
Fractional Powers
$$a^{\frac{\color{#004ec4}{T}}{\color{#D800AD}{B}}}=(\sqrt[\color{#D800AD}{B}]{a})^{\color{#004ec4}{T}}$$Use Fractional Powers to simplify the expression.$$9^{\frac{\color{#004ec4}{3}}{\color{#D800AD}{2}}}$$ `=` $$(\sqrt[\color{#D800AD}{2}]{9})^{\color{#004ec4}{3}}$$ `=` `(3)^3` `root (2)(9)=3` `=` `27` `27`
Quizzes
- Index Notation 1
- Index Notation 2
- Index Notation 3
- Multiply Indices 1
- Multiply Indices 2
- Multiply Indices 3
- Multiply Indices 4
- Divide Indices 1
- Divide Indices 2
- Powers of a Power 1
- Powers of a Power 2
- Powers of a Power 3
- Powers of a Power 4
- Zero Powers 1
- Zero Powers 2
- Negative Indices 1
- Negative Indices 2
- Negative Indices 3
- Fractional Indices 1
- Fractional Indices 2
- Fractional Indices 3
- Mixed Operations with Indices 1
- Mixed Operations with Indices 2