Years
>
Year 11>
Logarithmic Functions>
Definite Integrals of Logarithmic Functions>
Definite Integrals of Logarithmic FunctionsDefinite Integrals of Logarithmic Functions
Try VividMath Premium to unlock full access
Time limit: 0
Quiz summary
0 of 6 questions completed
Questions:
- 1
- 2
- 3
- 4
- 5
- 6
Information
–
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading...
You must sign in or sign up to start the quiz.
You have to finish following quiz, to start this quiz:
Loading...
- 1
- 2
- 3
- 4
- 5
- 6
- Answered
- Review
-
Question 1 of 6
1. Question
Find the definite integral$$\int_{0}^{2} \frac{x}{x^2+1}$$Hint
Help VideoCorrect
Great Work!
Incorrect
Integral of a Basic Fraction
$$\int{\frac{1}{\color{#004ec4}{x}}}dx=\log_e \color{#004ec4}{x}+c$$General Form Integral of a Fraction
$$\int \frac{\color{#9a00c7}{f'(x)}}{\color{#D800AD}{f(x)}}dx=\log_e [\color{#D800AD}{f(x)}]+c$$First, form a fraction to balance the equation.$$\frac{x}{\color{#CC0000}{x^2+1}}$$ `=` $$\frac{x}{\color{#CC0000}{2x}}$$ Differentiate `x^2+1` `=` `1/2` `x/x=1` Use `1/2` as a constant to balance the integral.`f(x)` `=` `x^2+1` `f'(x)` `=` `2x` $$\frac{1}{2}\int_{0}^{2} \frac{\color{#9a00c7}{f'(x)}}{\color{#D800AD}{f(x)}}dx$$ `=` $$\frac{1}{2}\int_{0}^{2} \frac{\color{#9a00c7}{2x}}{\color{#D800AD}{x^2+1}}dx$$ Substitute known values `=` `[1/2 ln (x^2+1)]_0^2` Finally, get the difference of the upper and lower limits substituted to the integral as `x`.`[1/2 ln (x^2+1)]_0^2` `=` `1/2[ln ((2)^2+1)-ln((0)^2+1)]` Substitute the limits `=` `1/2[ln 5-ln1]` Evaluate `=` `1/2 ln 5` `1/2 ln 5` -
Question 2 of 6
2. Question
Find the definite integral$$\int_{1}^{7} \frac{x^2}{x^3+2}$$Round your answer to two decimal places- (1.58)
Hint
Help VideoCorrect
Correct!
Incorrect
Integral of a Basic Fraction
$$\int{\frac{1}{\color{#004ec4}{x}}}dx=\log_e \color{#004ec4}{x}+c$$General Form Integral of a Fraction
$$\int \frac{\color{#9a00c7}{f'(x)}}{\color{#D800AD}{f(x)}}dx=\log_e [\color{#D800AD}{f(x)}]+c$$First, form a fraction to balance the equation.$$\frac{x^2}{\color{#CC0000}{x^3+2}}$$ `=` $$\frac{x^2}{\color{#CC0000}{3x^2}}$$ Differentiate `x^3+2` `=` `1/3` `x^2/x^2=1` Use `1/3` as a constant to balance the integral.`f(x)` `=` `x^3+2` `f'(x)` `=` `3x^2` $$\frac{1}{3}\int_{1}^{7} \frac{\color{#9a00c7}{f'(x)}}{\color{#D800AD}{f(x)}}dx$$ `=` $$\frac{1}{3}\int_{1}^{7} \frac{\color{#9a00c7}{3x^2}}{\color{#D800AD}{x^3+2}}dx$$ Substitute known values `=` `[1/3 ln (x^3+2)]_1^7` Finally, get the difference of the upper and lower limits substituted to the integral as `x`.`[1/3 ln (x^3+2)]_1^7` `=` `1/3[ln ((7)^3+2)-ln((1)^3+2)]` Substitute the limits `=` `1/3[ln 347-ln 3]` Evaluate `=` `1/3[4.7507]` Compute using calculator `=` `1.58` Rounded to two decimal places `1.58` -
Question 3 of 6
3. Question
Find the definite integral$$\int_{1}^{3} \frac{1}{2x-1}$$Hint
Help VideoCorrect
Keep Going!
Incorrect
Integral of a Basic Fraction
$$\int{\frac{1}{\color{#004ec4}{x}}}dx=\log_e \color{#004ec4}{x}+c$$General Form Integral of a Fraction
$$\int \frac{\color{#9a00c7}{f'(x)}}{\color{#D800AD}{f(x)}}dx=\log_e [\color{#D800AD}{f(x)}]+c$$First, form a fraction to balance the equation.$$\frac{1}{\color{#CC0000}{2x-1}}$$ `=` $$\frac{1}{\color{#CC0000}{2}}$$ Differentiate `2x-1` Use `1/2` as a constant to balance the integral.`f(x)` `=` `2x-1` `f'(x)` `=` `2` $$\frac{1}{2}\int_{1}^{3} \frac{\color{#9a00c7}{f'(x)}}{\color{#D800AD}{f(x)}}dx$$ `=` $$\frac{1}{2}\int_{1}^{3} \frac{\color{#9a00c7}{2}}{\color{#D800AD}{2x-1}}dx$$ Substitute known values `=` `[1/2 ln (2x-1)]_1^3` Finally, get the difference of the upper and lower limits substituted to the integral as `x`.`[1/2 ln (2x-1)]_1^3` `=` `1/2[ln (2(3)-1)-ln(2(1)-1)]` Substitute the limits `=` `1/2[ln 5-0]` Evaluate `=` `1/2 ln 5` `1/2 ln 5` -
Question 4 of 6
4. Question
Find the area under the curve `y=4/x`Round your answer to three decimal places- (4.394)`\text(units)^2`
Hint
Help VideoCorrect
Fantastic!
Incorrect
Integral of a Basic Fraction
$$\int{\frac{1}{\color{#004ec4}{x}}}dx=\log_e \color{#004ec4}{x}+c$$General Form Integral of a Fraction
$$\int \frac{\color{#9a00c7}{f'(x)}}{\color{#D800AD}{f(x)}}dx=\log_e [\color{#D800AD}{f(x)}]+c$$First, form a fraction to balance the equation.$$\frac{4}{\color{#CC0000}{x}}$$ `=` $$\frac{4}{\color{#CC0000}{4}}$$ Differentiate `x^3+2` `=` `4` `4/1=4` We can see the limits indicated in the graph`\text(Upper Limit)` `=` `3` `\text(Lower Limit)` `=` `1` Use `4` as a constant to balance the integral.`f(x)` `=` `x` `f'(x)` `=` `1` $$4\int_{1}^{3} \frac{\color{#9a00c7}{f'(x)}}{\color{#D800AD}{f(x)}}dx$$ `=` $$4\int_{1}^{7} \frac{\color{#9a00c7}{1}}{\color{#D800AD}{x}}dx$$ Substitute known values `=` `4[ln x]_1^3` Finally, get the difference of the upper and lower limits substituted to the integral as `x`.`4[ln x]_1^3` `=` `4[ln (3)-ln (1)]` Substitute the limits `=` `4[ln 3-ln 1]` Evaluate `=` `4 ln 3` `=` `4.394` Compute using calculator `4.394 \text(units)^2` -
Question 5 of 6
5. Question
Find the area under the curve `y=x/(x^2+1)` going to the x-axisRound your answer to two decimal places- (0.80, 0.8)`\text(units)^2`
Hint
Help VideoCorrect
Excellent!
Incorrect
Integral of a Basic Fraction
$$\int{\frac{1}{\color{#004ec4}{x}}}dx=\log_e \color{#004ec4}{x}+c$$General Form Integral of a Fraction
$$\int \frac{\color{#9a00c7}{f'(x)}}{\color{#D800AD}{f(x)}}dx=\log_e [\color{#D800AD}{f(x)}]+c$$First, form a fraction to balance the equation.$$\frac{x}{\color{#CC0000}{x^2+1}}$$ `=` $$\frac{x}{\color{#CC0000}{2x}}$$ Differentiate `x^3+2` `=` `1/2` `x/x=1` We can see the limits indicated in the graph`\text(Upper Limit)` `=` `2` `\text(Lower Limit)` `=` `0` Use `1/2` as a constant to balance the integral.`f(x)` `=` `x^2+1` `f'(x)` `=` `2x` $$\frac{1}{2}\int_{0}^{2} \frac{\color{#9a00c7}{f'(x)}}{\color{#D800AD}{f(x)}}dx$$ `=` $$\frac{1}{2}\int_{0}^{2} \frac{\color{#9a00c7}{2x}}{\color{#D800AD}{x^2+1}}dx$$ Substitute known values `=` `1/2[ln (x^2+1)]_0^2` Finally, get the difference of the upper and lower limits substituted to the integral as `x`.`1/2[ln (x^2+1)]_0^2` `=` `1/2[ln ((2)^2+1)-ln ((0)^2+1)]` Substitute the limits `=` `1/2[ln 5-ln 1]` Evaluate `=` `1/2 ln 5` `=` `0.80` Compute using calculator `0.80 \text(units)^2` -
Question 6 of 6
6. Question
Find the area under the curve `y=lnx` going to the x-axisHint
Help VideoCorrect
Nice Job!
Incorrect
Integral of a Basic Fraction
$$\int{\frac{1}{\color{#004ec4}{x}}}dx=\log_e \color{#004ec4}{x}+c$$General Form Integral of a Fraction
$$\int \frac{\color{#9a00c7}{f'(x)}}{\color{#D800AD}{f(x)}}dx=\log_e [\color{#D800AD}{f(x)}]+c$$Since we cannot integrate `ln x`, we can find the value of `x` and integrate it.`y` `=` `ln x` `e^y` `=` `e^(ln x)` Insert `e` as base to both sides `e^y` `=` `x` `e^(ln x)=x` `x` `=` `e^y` Therefore, the formula that we can use to find the area is `int e^y dy`We also need to find the limits for `y``\text(Lower Limit)` `=` `0` We can see on the graph that the upper limit on the x-axis is `3`Substitute this value to the equation to find the upper limit on the y-axis`y` `=` `ln x` `y` `=` `ln 3` `x=3` `\text(Upper Limit)` `=` `ln 3` Next, integrate and get the difference of the upper and lower limits substituted to the
integral as `x`.`int_0^(ln3) e^y dy` `=` `[e^y]_0^(ln3)` Integrate `=` `e^((ln3))-e^((0))` Substitute the limits `=` `3-1` Anything raised to `0` is `1` `=` `2` The area of the curve going to the y-axis is `2 \text(units)^2`To find the area of the curve going to the x-axis, find the area of the whole rectangle and subtract the area of the curve going to the y-axis.`\text(Area)` `=` `\text(length)times\text(width) ` `=` `ln 3times3` `=` `3ln 3-` `2` `3ln 3-2 \text(units)^2`