Years
>
Year 12>
Networks>
Completing a Table from a Network Diagram>
Completing a Table from a Network DiagramCompleting a Table from a Network Diagram
Try VividMath Premium to unlock full access
Time limit: 0
Quiz summary
0 of 4 questions completed
Questions:
- 1
- 2
- 3
- 4
Information
–
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading...
You must sign in or sign up to start the quiz.
You have to finish following quiz, to start this quiz:
Loading...
- 1
- 2
- 3
- 4
- Answered
- Review
-
Question 1 of 4
1. Question
Fill in the table using the undirected network belowFill in cells without values with `-`-
`\text(To)` `\text(From)` A B C D E A `-` (4) (7) (8) (7) B (4) `-` (5) (-) (-) C (7) (5) `-` (6) (-) D (8) (-) (6) `-` (9) E (8) (-) (-) (9) `-`
Hint
Help VideoCorrect
Keep Going!
Incorrect
An undirected network has edges that goes both ways, so each edge’s value is used twice. It then forms a symmetrical table.Fill up the table using the values of the edges going from a vertex to another.Note that since this network is undirected, the values on the table will be symmetrical as well.`\text(A to B)` and `\text(B to A)=4``\text(To)` `\text(From)` `A` `B` `C` `D` `E` `A` `4` `B` `4` `C` `D` `E` `\text(A to C)` and `\text(C to A)=7``\text(To)` `\text(From)` `A` `B` `C` `D` `E` `A` `4` `7` `B` `4` `C` `7` `D` `E` `\text(A to D)` and `\text(D to A)=8``\text(To)` `\text(From)` `A` `B` `C` `D` `E` `A` `4` `7` `8` `B` `4` `C` `7` `D` `8` `E` `\text(A to E)` and `\text(E to A)=7``\text(To)` `\text(From)` `A` `B` `C` `D` `E` `A` `4` `7` `8` `7` `B` `4` `C` `7` `D` `8` `E` `7` `\text(B to C)` and `\text(C to B)=5``\text(To)` `\text(From)` `A` `B` `C` `D` `E` `A` `4` `7` `8` `7` `B` `4` `5` `C` `7` `5` `D` `8` `E` `7` `\text(C to D)` and `\text(D to C)=6``\text(To)` `\text(From)` `A` `B` `C` `D` `E` `A` `4` `7` `8` `7` `B` `4` `5` `C` `7` `5` `6` `D` `8` `6` `E` `7` `\text(D to E)` and `\text(E to D)=9``\text(To)` `\text(From)` `A` `B` `C` `D` `E` `A` `4` `7` `8` `7` `B` `4` `5` `C` `7` `5` `6` `D` `8` `6` `9` `E` `7` `9` All the values are listed, so simply add dashes (`-`) to the rest of the cells.`\text(To)` `\text(From)` `A` `B` `C` `D` `E` `A` `-` `4` `7` `8` `7` `B` `4` `-` `5` `-` `-` `C` `7` `5` `-` `6` `-` `D` `8` `-` `6` `-` `9` `E` `7` `-` `-` `9` `-` `\text(To)` `\text(From)` `A` `B` `C` `D` `E` `A` `-` `4` `7` `8` `7` `B` `4` `-` `5` `-` `-` `C` `7` `5` `-` `6` `-` `D` `8` `-` `6` `-` `9` `E` `7` `-` `-` `9` `-` -
-
Question 2 of 4
2. Question
Fill in the table using the directed network belowFill in cells without values with `-`-
`\text(To)` `\text(From)` `P` `Q` `R` `S` `T` `P` `-` (16) (-) (-) (8) `Q` (10) `-` (12) (-) (19) `R` (-) (-) `-` (15) (-) `S` (-) (14) (20) `-` (-) `T` (10) (-) (-) (13) `-`
Hint
Help VideoCorrect
Well Done!
Incorrect
A directed network has edges that only goes one way, meaning each edge’s value is used only once.First, count the number of edges or connections the network has.There are a total of `10` edges. Therefore, there will only be `10` values to be entered to the table.Next, fill up the table using the values of the edges going from a vertex to another, following the given direction.`\text(P to Q)=16``\text(To)` `\text(From)` `P` `Q` `R` `S` `T` `P` `16` `Q` `R` `S` `T` `\text(P to T)=8``\text(To)` `\text(From)` `P` `Q` `R` `S` `T` `P` `16` `8` `Q` `R` `S` `T` `\text(Q to P)=10``\text(To)` `\text(From)` `P` `Q` `R` `S` `T` `P` `16` `8` `Q` `10` `R` `S` `T` `\text(Q to R)=12``\text(To)` `\text(From)` `P` `Q` `R` `S` `T` `P` `16` `8` `Q` `10` `12` `R` `S` `T` `\text(Q to T)=19``\text(To)` `\text(From)` `P` `Q` `R` `S` `T` `P` `16` `8` `Q` `10` `12` `19` `R` `S` `T` `\text(R to S)=15``\text(To)` `\text(From)` `P` `Q` `R` `S` `T` `P` `16` `8` `Q` `10` `12` `19` `R` `15` `S` `T` `\text(S to Q)=14``\text(To)` `\text(From)` `P` `Q` `R` `S` `T` `P` `16` `8` `Q` `10` `12` `19` `R` `15` `S` `14` `T` `\text(S to R)=20``\text(To)` `\text(From)` `P` `Q` `R` `S` `T` `P` `16` `8` `Q` `10` `12` `19` `R` `15` `S` `14` `20` `T` `\text(T to P)=10``\text(To)` `\text(From)` `P` `Q` `R` `S` `T` `P` `16` `8` `Q` `10` `12` `19` `R` `15` `S` `14` `20` `T` `10` `\text(T to S)=13``\text(To)` `\text(From)` `P` `Q` `R` `S` `T` `P` `16` `8` `Q` `10` `12` `19` `R` `15` `S` `14` `20` `T` `10` `13` Since there are already `10` values listed in the table, all the values are accounted for. Add dashes (`-`) to the rest of the cells.`\text(To)` `\text(From)` `P` `Q` `R` `S` `T` `P` `-` `16` `-` `-` `8` `Q` `10` `-` `12` `-` `19` `R` `-` `-` `-` `15` `-` `S` `-` `14` `20` `-` `-` `T` `10` `-` `-` `13` `-` `\text(To)` `\text(From)` `P` `Q` `R` `S` `T` `P` `-` `16` `-` `-` `8` `Q` `10` `-` `12` `-` `19` `R` `-` `-` `-` `15` `-` `S` `-` `14` `20` `-` `-` `T` `10` `-` `-` `13` `-` -
-
Question 3 of 4
3. Question
Fill in the table using the directed network belowFill in cells without values with `-`-
`\text(To)` `\text(From)` `A` `B` `C` `D` `E` `F` `A` `-` (-) (-) (-) (10) (2) `B` (3) `-` (6) (-) (-) (-) `C` (-) (8) `-` (7) (-) (-) `D` (-) (-) (-) `-` (4) (6) `E` (-) (-) (12) (-) `-` (5) `F` (-) (4) (-) (-) (-) `-`
Hint
Help VideoCorrect
Correct!
Incorrect
A directed network has edges that only goes one way, meaning each edge’s value is used only once.First, count the number of edges or connections the network has.There are a total of `11` edges. Therefore, there will only be `11` values to be entered to the table.Next, fill up the table using the values of the edges going from a vertex to another, following the given direction.`\text(A to E)=10``\text(To)` `\text(From)` `A` `B` `C` `D` `E` `F` `A` `10` `B` `C` `D` `E` `F` `\text(A to F)=2``\text(To)` `\text(From)` `A` `B` `C` `D` `E` `F` `A` `10` `2` `B` `C` `D` `E` `F` `\text(B to A)=3``\text(To)` `\text(From)` `A` `B` `C` `D` `E` `F` `A` `10` `2` `B` `3` `C` `D` `E` `F` `\text(B to C)=6``\text(To)` `\text(From)` `A` `B` `C` `D` `E` `F` `A` `10` `2` `B` `3` `6` `C` `D` `E` `F` `\text(C to B)=8``\text(To)` `\text(From)` `A` `B` `C` `D` `E` `F` `A` `10` `2` `B` `3` `6` `C` `8` `D` `E` `F` `\text(C to D)=7``\text(To)` `\text(From)` `A` `B` `C` `D` `E` `F` `A` `10` `2` `B` `3` `6` `C` `8` `7` `D` `E` `F` `\text(D to E)=4``\text(To)` `\text(From)` `A` `B` `C` `D` `E` `F` `A` `10` `2` `B` `3` `6` `C` `8` `7` `D` `4` `E` `F` `\text(D to F)=6``\text(To)` `\text(From)` `A` `B` `C` `D` `E` `F` `A` `10` `2` `B` `3` `6` `C` `8` `7` `D` `4` `6` `E` `F` `\text(E to C)=12``\text(To)` `\text(From)` `A` `B` `C` `D` `E` `F` `A` `10` `2` `B` `3` `6` `C` `8` `7` `D` `4` `6` `E` `12` `F` `\text(E to F)=5``\text(To)` `\text(From)` `A` `B` `C` `D` `E` `F` `A` `10` `2` `B` `3` `6` `C` `8` `7` `D` `4` `6` `E` `12` `5` `F` `\text(F to B)=4``\text(To)` `\text(From)` `A` `B` `C` `D` `E` `F` `A` `10` `2` `B` `3` `6` `C` `8` `7` `D` `4` `6` `E` `12` `5` `F` `4` `\text(To)` `\text(From)` `A` `B` `C` `D` `E` `F` `A` `-` `-` `-` `-` `10` `2` `B` `3` `-` `6` `-` `-` `-` `C` `-` `8` `-` `7` `-` `-` `D` `-` `-` `-` `-` `4` `6` `E` `-` `-` `12` `-` `-` `5` `F` `-` `4` `-` `-` `-` `-` -
-
Question 4 of 4
4. Question
Fill in the table using the directed network belowFill in cells without values with `-`-
`\text(To)` `\text(From)` `A` `B` `C` `D` `E` `F` `A` `-` (9) (-) (-) (23) (10) `B` (8) `-` (-) (-) (-) (15) `C` (-) (10) `-` (5) (-) (-) `D` (-) (-) (-) `-` (8) (7) `E` (-) (-) (-) (6) `-` (9) `F` (-) (14) (6) (-) (-) `-`
Hint
Help VideoCorrect
Fantastic!
Incorrect
A directed network has edges that only goes one way, meaning each edge’s value is used only once.First, count the number of edges or connections the network has.There are a total of `13` edges. Therefore, there will only be `13` values to be entered to the table.Next, fill up the table using the values of the edges going from a vertex to another, following the given direction.`\text(A to B)=9``\text(To)` `\text(From)` `A` `B` `C` `D` `E` `F` `A` `9` `B` `C` `D` `E` `F` `\text(A to E)=23``\text(To)` `\text(From)` `A` `B` `C` `D` `E` `F` `A` `9` `23` `B` `C` `D` `E` `F` `\text(A to F)=10``\text(To)` `\text(From)` `A` `B` `C` `D` `E` `F` `A` `9` `23` `10` `B` `C` `D` `E` `F` `\text(B to A)=8``\text(To)` `\text(From)` `A` `B` `C` `D` `E` `F` `A` `9` `23` `10` `B` `8` `C` `D` `E` `F` `\text(B to F)=15``\text(To)` `\text(From)` `A` `B` `C` `D` `E` `F` `A` `9` `23` `10` `B` `8` `15` `C` `D` `E` `F` `\text(C to B)=10``\text(To)` `\text(From)` `A` `B` `C` `D` `E` `F` `A` `9` `23` `10` `B` `8` `15` `C` `10` `D` `E` `F` `\text(C to D)=5``\text(To)` `\text(From)` `A` `B` `C` `D` `E` `F` `A` `9` `23` `10` `B` `8` `15` `C` `10` `5` `D` `E` `F` `\text(D to E)=8``\text(To)` `\text(From)` `A` `B` `C` `D` `E` `F` `A` `9` `23` `10` `B` `8` `15` `C` `10` `5` `D` `8` `E` `F` `\text(D to F)=7``\text(To)` `\text(From)` `A` `B` `C` `D` `E` `F` `A` `9` `23` `10` `B` `8` `15` `C` `10` `5` `D` `8` `7` `E` `F` `\text(E to D)=6``\text(To)` `\text(From)` `A` `B` `C` `D` `E` `F` `A` `9` `23` `10` `B` `8` `15` `C` `10` `5` `D` `8` `7` `E` `6` `F` `\text(E to F)=9``\text(To)` `\text(From)` `A` `B` `C` `D` `E` `F` `A` `9` `23` `10` `B` `8` `15` `C` `10` `5` `D` `8` `7` `E` `6` `9` `F` `\text(F to B)=14``\text(To)` `\text(From)` `A` `B` `C` `D` `E` `F` `A` `9` `23` `10` `B` `8` `15` `C` `10` `5` `D` `8` `7` `E` `6` `9` `F` `14` `\text(F to C)=6``\text(To)` `\text(From)` `A` `B` `C` `D` `E` `F` `A` `9` `23` `10` `B` `8` `15` `C` `10` `5` `D` `8` `7` `E` `6` `9` `F` `14` `6` `\text(To)` `\text(From)` `A` `B` `C` `D` `E` `F` `A` `-` `9` `-` `-` `23` `10` `B` `8` `-` `-` `-` `-` `15` `C` `-` `10` `-` `5` `-` `-` `D` `-` `-` `-` `-` `8` `7` `E` `-` `-` `-` `6` `-` `9` `F` `-` `14` `6` `-` `-` `-` -
Quizzes
- Vertices and Edges
- Degrees 1
- Degrees 2
- Degrees 3
- Drawing A Network 1
- Drawing A Network 2
- Completing a Table from a Network Diagram
- Network from Maps and Plans
- Identifying Paths and Cycles
- Eulerian Trails and Circuits 1
- Eulerian Trails and Circuits 2
- Identifying Spanning Trees
- Minimum Spanning Trees 1
- Minimum Spanning Trees 2
- Shortest Path 1
- Shortest Path 2