Combinations 2
Try VividMath Premium to unlock full access
Time limit: 0
Quiz summary
0 of 6 questions completed
Questions:
- 1
- 2
- 3
- 4
- 5
- 6
Information
–
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading...
You must sign in or sign up to start the quiz.
You have to finish following quiz, to start this quiz:
Loading...
- 1
- 2
- 3
- 4
- 5
- 6
- Answered
- Review
-
Question 1 of 6
1. Question
How many ways can students answer `6` questions on a `10` question quiz?- (210)
Hint
Help VideoCorrect
Great Work!
Incorrect
Use the combinations formula to find the number of ways an item can be chosen `(r)` from the total number of questions `(n)`.Remember that order is not important in Combinations.Combination Formula
$$ _\color{purple}{n}C_{\color{green}{r}}=\frac{\color{purple}{n}!}{(\color{purple}{n}-\color{green}{r})!\color{green}{r}!} $$We need to find the different ways that students can answer `6` questions `(r)` on a `10` question quiz `(n)``r=6``n=10`$$_\color{purple}{n}C_{\color{green}{r}}$$ `=` $$ \frac{\color{purple}{n}!}{(\color{purple}{n}-\color{green}{r})!\color{green}{r}!} $$ Combination Formula $$_\color{purple}{10}C_{\color{green}{6}}$$ `=` $$\frac{\color{purple}{10}!}{(\color{purple}{10}-\color{green}{6})!\color{green}{6}!} $$ Substitute the values of `r` and `n` `=` $$ \frac{10!}{4! 6!} $$ `=` $$ \frac{10\cdot9\cdot8\cdot7\cdot{\color{#CC0000}{6}}\cdot{\color{#CC0000}{5}}\cdot{\color{#CC0000}{4}}\cdot{\color{#CC0000}{3}}\cdot{\color{#CC0000}{2}}\cdot{\color{#CC0000}{1}}}{4\cdot3\cdot2\cdot1\cdot{\color{#CC0000}{6}}\cdot{\color{#CC0000}{5}}\cdot{\color{#CC0000}{4}}\cdot{\color{#CC0000}{3}}\cdot{\color{#CC0000}{2}}\cdot{\color{#CC0000}{1}}} $$ `=` $$ \frac{10\cdot9\cdot{\color{#CC0000}{8}}\cdot7}{{\color{#CC0000}{4}}\cdot3\cdot{\color{#CC0000}{2}}\cdot1} $$ Cancel like terms `=` $$ \frac{10\cdot9\cdot7}{3\cdot1} $$ `4xx2=8` `=` $$ \frac{630}{3} $$ `=` $$210$$ `210` -
Question 2 of 6
2. Question
How many ways can we form a group of `3` men and `4` women from a group of `5` men and `6` women?- (150)
Hint
Help VideoCorrect
Well Done!
Incorrect
Use the combinations formula to find the number of ways an item can be chosen `(r)` from the total number of items `(n)`.Remember that order is not important in Combinations.Combination Formula
$$ _\color{purple}{n}C_{\color{green}{r}}=\frac{\color{purple}{n}!}{(\color{purple}{n}-\color{green}{r})!\color{green}{r}!} $$First, we need to find the different ways that `4` women `(r)` can be selected from a total of `6` women `(n)``r=4``n=6`$$_\color{purple}{n}C_{\color{green}{r}}$$ `=` $$ \frac{\color{purple}{n}!}{(\color{purple}{n}-\color{green}{r})!\color{green}{r}!} $$ Combination Formula $$_\color{purple}{6}C_{\color{green}{4}}$$ `=` $$\frac{\color{purple}{6}!}{(\color{purple}{6}-\color{green}{4})!\color{green}{4}!} $$ Substitute the values of `r` and `n` `=` $$ \frac{6!}{2! 4!} $$ `=` $$ \frac{6\cdot5\cdot{\color{#CC0000}{4}}\cdot{\color{#CC0000}{3}}\cdot{\color{#CC0000}{2}}\cdot{\color{#CC0000}{1}}}{2\cdot1\cdot{\color{#CC0000}{4}}\cdot{\color{#CC0000}{3}}\cdot{\color{#CC0000}{2}}\cdot{\color{#CC0000}{1}}} $$ `=` $$ \frac{6\cdot5}{2\cdot1} $$ Cancel like terms `=` $$ \frac{30}{2} $$ `=` $$15$$ Next, we need to find the different ways that `3` men `(r)` can be selected from a total of `5` men `(n)``r=3``n=5`$$_\color{purple}{n}C_{\color{green}{r}}$$ `=` $$ \frac{\color{purple}{n}!}{(\color{purple}{n}-\color{green}{r})!\color{green}{r}!} $$ Combination Formula $$_\color{purple}{5}C_{\color{green}{3}}$$ `=` $$\frac{\color{purple}{5}!}{(\color{purple}{5}-\color{green}{3})!\color{green}{3}!} $$ Substitute the values of `r` and `n` `=` $$ \frac{5!}{2! 3!} $$ `=` $$ \frac{5\cdot4\cdot{\color{#CC0000}{3}}\cdot{\color{#CC0000}{2}}\cdot{\color{#CC0000}{1}}}{2\cdot1\cdot{\color{#CC0000}{3}}\cdot{\color{#CC0000}{2}}\cdot{\color{#CC0000}{1}}} $$ `=` $$ \frac{5\cdot4}{2\cdot1} $$ Cancel like terms `=` $$ \frac{20}{2} $$ `=` $$10$$ Finally, multiply the values to get the total number of ways.`15``times``10` `=` `150` `150` -
Question 3 of 6
3. Question
How many ways can we form a group of `4` men and `3` women from a group of `7` men and `5` women?- (350)
Hint
Help VideoCorrect
Excellent!
Incorrect
Use the combinations formula to find the number of ways an item can be chosen `(r)` from the total number of items `(n)`.Remember that order is not important in Combinations.Combination Formula
$$ _\color{purple}{n}C_{\color{green}{r}}=\frac{\color{purple}{n}!}{(\color{purple}{n}-\color{green}{r})!\color{green}{r}!} $$First, we need to find the different ways that `3` women `(r)` can be selected from a total of `5` women `(n)``r=3``n=5`$$_\color{purple}{n}C_{\color{green}{r}}$$ `=` $$ \frac{\color{purple}{n}!}{(\color{purple}{n}-\color{green}{r})!\color{green}{r}!} $$ Combination Formula $$_\color{purple}{5}C_{\color{green}{3}}$$ `=` $$\frac{\color{purple}{5}!}{(\color{purple}{5}-\color{green}{3})!\color{green}{3}!} $$ Substitute the values of `r` and `n` `=` $$ \frac{5!}{2! 3!} $$ `=` $$ \frac{5\cdot4\cdot{\color{#CC0000}{3}}\cdot{\color{#CC0000}{2}}\cdot{\color{#CC0000}{1}}}{2\cdot1\cdot{\color{#CC0000}{3}}\cdot{\color{#CC0000}{2}}\cdot{\color{#CC0000}{1}}} $$ `=` $$ \frac{5\cdot4}{2\cdot1} $$ Cancel like terms `=` $$ \frac{20}{2} $$ `=` $$10$$ Next, we need to find the different ways that `4` men `(r)` can be selected from a total of `7` men `(n)``r=4``n=7`$$_\color{purple}{n}C_{\color{green}{r}}$$ `=` $$ \frac{\color{purple}{n}!}{(\color{purple}{n}-\color{green}{r})!\color{green}{r}!} $$ Combination Formula $$_\color{purple}{7}C_{\color{green}{4}}$$ `=` $$\frac{\color{purple}{7}!}{(\color{purple}{7}-\color{green}{4})!\color{green}{4}!} $$ Substitute the values of `r` and `n` `=` $$ \frac{7!}{3! 4!} $$ `=` $$ \frac{7\cdot6\cdot5\cdot{\color{#CC0000}{4}}\cdot{\color{#CC0000}{3}}\cdot{\color{#CC0000}{2}}\cdot{\color{#CC0000}{1}}}{3\cdot2\cdot1\cdot{\color{#CC0000}{4}}\cdot{\color{#CC0000}{3}}\cdot{\color{#CC0000}{2}}\cdot{\color{#CC0000}{1}}} $$ `=` $$ \frac{7\cdot{\color{#CC0000}{6}}\cdot5}{{\color{#CC0000}{3}}\cdot{\color{#CC0000}{2}}\cdot1} $$ Cancel like terms `=` $$ \frac{7\cdot5}{1} $$ `3xx2=6` `=` $$35$$ Finally, multiply the values to get the total number of ways.`10``times``35` `=` `350` `350` -
Question 4 of 6
4. Question
How many ways can a `12`-member panel be formed from a total pool of `38` people?Hint
Help VideoCorrect
Keep Going!
Incorrect
Use the combinations formula to find the number of ways an item can be chosen `(r)` from the total number of items `(n)`.Remember that order is not important in Combinations.Combination Formula
$$ _\color{purple}{n}C_{\color{green}{r}}=\frac{\color{purple}{n}!}{(\color{purple}{n}-\color{green}{r})!\color{green}{r}!} $$We need to find the different ways that a `12`-member panel `(r)` can be formed from a pool of `38` people `(n)``r=12``n=38`$$_\color{purple}{n}C_{\color{green}{r}}$$ `=` $$ \frac{\color{purple}{n}!}{(\color{purple}{n}-\color{green}{r})!\color{green}{r}!} $$ Combination Formula $$_\color{purple}{38}C_{\color{green}{12}}$$ `=` $$\frac{\color{purple}{38}!}{(\color{purple}{38}-\color{green}{12})!\color{green}{12}!} $$ Substitute the values of `r` and `n` `=` $$ \frac{38!}{26! 12!} $$ `=` `2 707 475 148` Use the calculator’s factorial function for large numbers `2 707 475 148` -
Question 5 of 6
5. Question
In how many ways can `4` cards be chosen from a standard deck of `52` cards?Hint
Help VideoCorrect
Great Work!
Incorrect
Use the combinations formula to find the number of ways an item can be chosen `(r)` from the total number of items `(n)`.Remember that order is not important in Combinations.Combination Formula
$$ _\color{purple}{n}C_{\color{green}{r}}=\frac{\color{purple}{n}!}{(\color{purple}{n}-\color{green}{r})!\color{green}{r}!} $$We need to find the different ways that `4` cards `(r)` can be chosen from a standard deck of `52` cards `(n)``r=4``n=52`$$_\color{purple}{n}C_{\color{green}{r}}$$ `=` $$ \frac{\color{purple}{n}!}{(\color{purple}{n}-\color{green}{r})!\color{green}{r}!} $$ Combination Formula $$_\color{purple}{52}C_{\color{green}{4}}$$ `=` $$\frac{\color{purple}{52}!}{(\color{purple}{52}-\color{green}{4})!\color{green}{4}!} $$ Substitute the values of `r` and `n` `=` $$ \frac{52!}{48! 4!} $$ `=` `270 725` Use the calculator’s factorial function for large numbers `270 725` -
Question 6 of 6
6. Question
In how many ways can `3` marbles be drawn from the jar below?- (120)
Hint
Help VideoCorrect
Correct!
Incorrect
Use the combinations formula to find the number of ways an item can be chosen `(r)` from the total number of items `(n)`.Remember that order is not important in Combinations.Combination Formula
$$ _\color{purple}{n}C_{\color{green}{r}}=\frac{\color{purple}{n}!}{(\color{purple}{n}-\color{green}{r})!\color{green}{r}!} $$First, find the total number of marbles (`n`)`n` `=` `2` black `+3` red `+5` blue `n` `=` `10` marbles We need to find the different ways that `3` marbles `(r)` can be chosen from a jar of `10` marbles `(n)``r=3``n=10`$$_\color{purple}{n}C_{\color{green}{r}}$$ `=` $$ \frac{\color{purple}{n}!}{(\color{purple}{n}-\color{green}{r})!\color{green}{r}!} $$ Combination Formula $$_\color{purple}{10}C_{\color{green}{3}}$$ `=` $$\frac{\color{purple}{10}!}{(\color{purple}{10}-\color{green}{3})!\color{green}{3}!} $$ Substitute the values of `r` and `n` `=` $$ \frac{10!}{7! 3!} $$ `=` $$ \frac{10\cdot9\cdot8\cdot{\color{#CC0000}{7}}\cdot{\color{#CC0000}{6}}\cdot{\color{#CC0000}{5}}\cdot{\color{#CC0000}{4}}\cdot{\color{#CC0000}{3}}\cdot{\color{#CC0000}{2}}\cdot{\color{#CC0000}{1}}}{{\color{#CC0000}{7}}\cdot{\color{#CC0000}{6}}\cdot{\color{#CC0000}{5}}\cdot{\color{#CC0000}{4}}\cdot{\color{#CC0000}{3}}\cdot{\color{#CC0000}{2}}\cdot{\color{#CC0000}{1}}\cdot3\cdot2\cdot1} $$ `=` $$ \frac{10\cdot9\cdot8}{3\cdot2\cdot1} $$ Cancel like terms `=` $$ \frac{720}{6} $$ `=` $$120$$ `120`
Quizzes
- Factorial Notation
- Fundamental Counting Principle 1
- Fundamental Counting Principle 2
- Fundamental Counting Principle 3
- Combinations 1
- Combinations 2
- Combinations with Restrictions 1
- Combinations with Restrictions 2
- Combinations with Probability
- Basic Permutations 1
- Basic Permutations 2
- Basic Permutations 3
- Permutation Problems 1
- Permutation Problems 2
- Permutations with Repetitions 1
- Permutations with Repetitions 2
- Permutations with Restrictions 1
- Permutations with Restrictions 2
- Permutations with Restrictions 3
- Permutations with Restrictions 4