Circumference of Circles
Try VividMath Premium to unlock full access
Time limit: 0
Quiz summary
0 of 7 questions completed
Questions:
- 1
- 2
- 3
- 4
- 5
- 6
- 7
Information
–
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading...
You must sign in or sign up to start the quiz.
You have to finish following quiz, to start this quiz:
Loading...
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- Answered
- Review
-
Question 1 of 7
1. Question
Find the circumference of the circleRound your answer to `2` decimal placesUse `pi=3.14`- `\text(Circumference )=` (37.68, 37.70, 37.71) `cm`
Hint
Help VideoCorrect
Great Work!
Incorrect
Circumference Formula
`\text(Circumference) =2 xx pi xx ``\text(radius)`Given Lengths
`\text(radius)=6`Solve for the circumference using the formula `C=2pi``r`Use `pi=3.14` See `pi` explained`\text(Circumference)` `=` `2 xx pi xx ``\text(radius)` Circumference Formula `=` `2 times 3.14 times ``6` Plug in the known values `=` `6.28 times 6` Evaluate `=` `37.68 cm` `\text(Circumference)=37.68 cm`The answer will depend on which `pi` you use.In this solution we use: `pi=3.14`.Using Answer `pi=3.14` `37.68 cm` `pi=3.141592654` `37.70 cm` `pi=(22)/(7)` `37.71 cm` -
Question 2 of 7
2. Question
Find the circumference of the circleRound your answer to `1` decimal placeUse `pi=22/7 \text(or) pi=3.14`- `\text(Circumference )=` (50.3, 50.2) `cm`
Hint
Help VideoCorrect
Correct!
Incorrect
Circumference Formula
`\text(Circumference) =2 xx pi xx ``\text(radius)`Given Lengths
`\text(radius)=8`Solve for the circumference using the formula `C=2pi``r`Use `pi=22/7` See `pi` explained`\text(Circumference)` `=` `2 xx pi xx``\text(radius)` Circumference Formula `=` `2 times 22/7 times ``8` Plug in the known values `=` `44/7 times 8` Evaluate `=` `352/7` `352 divide 7` `=` `50.28571` `=` `50.3 cm` Rounded off to `1` decimal place `\text(Circumference)=50.3 cm`The answer will depend on which `pi` you use.In this solution we use: `pi=22/7`.Using Answer `pi=(22)/(7)` `50.3 cm` `pi=3.14` `50.2 cm` `pi=3.141592654` `50.3 cm` -
Question 3 of 7
3. Question
Find the circumference of the CircleRound your answer to `1` decimal placeUse `pi=3.14`- `\text(Circumference )=` (47.1) `cm`
Hint
Help VideoCorrect
Keep Going!
Incorrect
Circumference Formula (using diameter)
`\text(Circumference) =pi xx ``\text(diameter)`Given Lengths
`\text(diameter)=15`Solve for the circumference using the formula `C=pi``d`Use `pi=3.14` See `pi` explained`\text(Circumference)` `=` `pi xx``\text(diameter)` Circumference Formula `=` `3.14 times ``15` Plug in the known values `=` `47.1 cm` `\text(Circumference)=47.1 cm`The answer will depend on which `pi` you use.In this solution we used: `pi=3.14`.Using Answer `pi=3.14` `47.1 cm` `pi=3.141592654` `47.1 cm` `pi=(22)/(7)` `47.1 cm` -
Question 4 of 7
4. Question
Find the circumference of the circleRound your answer to `1` decimal placeUse `pi=22/7 \text(or) pi=3.14`- `\text(Circumference )=` (163.4, 163.3) `mm`
Hint
Help VideoCorrect
Fantastic!
Incorrect
Circumference Formula
`\text(Circumference) =2 xx pi xx ``\text(radius)`Given Lengths
`\text(diameter)=52`First, find the radius of the circle. Note that the radius is half of the diameter.`\text(Radius)` `=` `1/2 xx``\text(diameter)` `=` `1/2 xx``52` `\text(Radius)` `=` `26` Solve for the circumference using the formula `C=2pi``r`Use `pi=22/7` See `pi` explained`\text(Circumference)` `=` `2 xx pi xx``\text(radius)` Circumference Formula `=` `2 xx 22/7 xx ``26` Plug in the known values `=` `44/7 xx ``26` Evaluate `=` `1144/7` `1144 divide 7` `=` `163.42857` `=` `163.4 mm` Rounded to `1` decimal place `\text(Circumference)=163.4 mm`The answer will depend on which `pi` you use.In this solution we use: `pi=22/7`.Using Answer `pi=(22)/(7)` `163.4 mm` `pi=3.14` `163.3 mm` `pi=3.141592654` `163.4 mm` -
Question 5 of 7
5. Question
Find the perimeter of the Semi-circleRound your answer to `1` decimal placeUse `pi=3.141592654`- `\text(Perimeter )=` (102.8, 102.9) `mm`
Hint
Help VideoCorrect
Excellent!
Incorrect
Perimeter of a Semicircle
`\text(Perimeter)=\frac{1}{2}times pi times``\text(diameter)`Given Lengths
`\text(diameter)=40`Solve for the perimeter using the formulaUse `pi=3.141592654` See `pi` explained`\text(Perimeter)``\text(Semicircle)` `=` `\frac{1}{2}times pi times``\text(diameter)` Circumference of a Semi-Circle Formula `=` `\frac{1}{2}times 3.141592654 times``40` Plug in the known values `=` `62.8318 mm` Note that `62.8318 mm` is just the curve of the SemicircleAdd the length of the Line under the curve which is equal to the diameter.$$\text{Final Perimeter}$$ `=` `62.8318` `+40` `=` `102.8318 mm` `=` `102.8 mm` Rounded to `1` decimal place `\text(Perimeter)=102.8 mm`The answer will depend on which `pi` you use.In this solution we used: `pi=3.141592654`.Using Answer `pi=3.141592654` `102.8 mm` `pi=3.14` `102.8 mm` `pi=(22)/(7)` `102.9 mm` -
Question 6 of 7
6. Question
Find the perimeter of the shapeRound your answer to `1` decimal placeUse `pi=3.141592654`- `\text(Perimeter )=` (41.1) `cm`
Hint
Help VideoCorrect
Nice Job!
Incorrect
Perimeter of a Semicircle
`\text(Perimeter)=\frac{1}{2}times pi times``\text(diameter)`Given Lengths
`\text(diameter) = 9`Solve for the perimeter of the SemicirleUse `pi=3.141592654` See `pi` explained`\text(Perimeter)``\text(Semicircle)` `=` `\frac{1}{2}times pi times``\text(diameter)` Circumference Formula `=` `\frac{1}{2}times 3.141592654 times``9` Plug in the known values `=` `14.13716 cm` Find the perimeter of the Square by adding all the sidesAll sides of a regular square are equalThe top side of the square is connected to the semi-circle so we don’t add the top side.`\text(Perimeter)``\text(Square)` `=` `9 + 9 + 9` Add the `3` sides `=` `27 cm` Now add the two perimeters`\text(Total Perimeter)` `=` `14.13716``+``27` `=` `41.13716` `=` `41.1 cm` Rounded to `1` decimal place `\text(Perimeter)=41.1 cm`The answer will depend on which `pi` you use.In this solution we used: `pi=3.141592654`.Using Answer `pi=3.141592654` `41.1 cm` `pi=3.14` `41.1 cm` `pi=(22)/(7)` `41.1 cm` -
Question 7 of 7
7. Question
Find the perimeter of the shapeNote that the radius of the larger semi-circle is `12cm`.Round your answer to `1` decimal placeUse `pi=3.141592654`- `\text(Perimeter )=` (68.5, 68.6) `cm`
Hint
Help VideoCorrect
Exceptional!
Incorrect
Perimeter of a Semicircle
`\text(Perimeter)=\frac{1}{2}times pi times``\text(diameter)`Or`\text(Perimeter)=pi times``\text(radius)`Given Lengths
`\text(diameter)` (Smaller Semicircle)`=12``\text(radius)` (Larger Semicircle)`=12`Solve for the perimeter of the Larger SemicircleUse `pi=3.141592654` See `pi` explained`\text(Perimeter)``\text(Larger Semicircle)` `=` `pi times``\text(radius)` Perimeter of a Semicircle Formula `=` `3.141592654 xx``12` Plug in the known values `=` `37.69911 cm` Solve for the perimeter of the Smaller SemicircleUse `pi=3.141592654` See `pi` explained`\text(Perimeter)``\text(Smaller Semicircle)` `=` `\frac{1}{2}times pi times``\text(diameter)` Perimeter of a Semicircle Formula `=` `\frac{1}{2}times 3.141592654 times``12` Plug in the known values `=` `18.84955 cm` Now add the two perimeters`\text(Perimeter)` `=` `37.69911``+``18.84955` `=` `56.54866 cm` `=` `56.5 cm` Rounded to `1` decimal place Finally, add the value of the straight line, which is `12`, to get the
total perimeter$$\text{Total Perimeter}$$ `=` `56.5` `+``12` `=` `68.5 cm` `\text(Perimeter)=68.5 cm`The answer will depend on which `pi` you use.In this solution we used: `pi=3.141592654`.Using Answer `pi=3.141592654` `68.5 cm` `pi=3.14` `68.5 cm` `pi=(22)/(7)` `68.6 cm`