Years
>
Year 12>
Quadratic Polynomial>
Graph Quadratic Functions in Standard Form>
Graph Quadratic Functions in Standard Form 2Graph Quadratic Functions in Standard Form 2
Try VividMath Premium to unlock full access
Time limit: 0
Quiz summary
0 of 4 questions completed
Questions:
- 1
- 2
- 3
- 4
Information
–
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading...
You must sign in or sign up to start the quiz.
You have to finish following quiz, to start this quiz:
Loading...
- 1
- 2
- 3
- 4
- Answered
- Review
-
Question 1 of 4
1. Question
Graph `y=-x^2+6x-9`.Hint
Help VideoCorrect
Well Done!
Incorrect
Standard Form of a Parabola
$$\color{green}{y}=a \color{green}{x}^{2}+b\color{green}{x}+c$$The value of `a` is negative, so the graph is concave down.Solve for the `y`-intercept by substituting `x=0`.`y` `=` $$-\color{green}{x}^{2}+6\color {green}{x}-9$$ `=` $$-(\color{green}{0}^{2})-6(\color {green}{0})-9$$ Substitute `x=0` `=` `0-0-9` `y` `=` `-9` Simplify Find the vertex of the parabola by solving for `x` from the formula `x=-b/(2a)`.`x` `=` `-b/(2a)` `=` `-6/(2(-1))` `a=-1`,`b=6` `=` `-6/(-2)` `x` `=` `3` This also marks the axis of symmetry.Substitute the value of `x` back into the quadratic equation to find the vertex.`y` `=` $$-\color{green}{x}^{2}+6\color {green}{x}-9$$ `=` $$-(\color{green}{3}^{2})+6(\color {green}{3})-9$$ Substitute `x=3` `=` `-9+18-9` `y` `=` `0` Simplify This corresponds to a vertex of `(3,0)`. Mark this on the graph.Using the vertex and the axis of symmetry obtained above, a graph can now be drawn. -
Question 2 of 4
2. Question
Graph the function`y=2x^2-5x-3`Hint
Help VideoCorrect
Keep Going!
Incorrect
Axis of Symmetry
$$x=\frac{-\color{#9a00c7}{b}}{2\color{#00880A}{a}}$$First, find the `x` values by factoring using cross method`(2x+1)(x-3)` `=` `0` `2x+1` `=` `0` `2x+1` `-1` `=` `0` `-1` `2x` `=` `-1` `2x``-:2` `=` `-1``-:2` `x` `=` `-1/2` `x-3` `=` `0` `x-3` `+3` `=` `0` `+3` `x` `=` `3` Mark these `2` points on the `x` axisNext, find the axis of symmetry and add it to the graph`y=2x^2-5x-3``a=2` `b=-5` `c=-3``x` `=` $$\frac{-\color{#9a00c7}{b}}{2\color{#00880A}{a}}$$ Axis of Symmetry `x` `=` $$\frac{-\color{#9a00c7}{(-5)}}{2\color{#00880A}{(2)}}$$ Substitute values `x` `=` `5/4` Now, substitute `x=5/4` to the equation to know where the graph intersects the axis of symmetry`y` `=` `2x^2-5x-3` `=` `2(5/4)^2-5(5/4)-3` Substitute `x=5/4` `=` `-49/8` `y` `=` `-6 1/8` Finally, substitute `x=0` to find where graph intersects the `y` axis`y` `=` `2x^2-5x-3` `=` `2(0)^2-5(0)-3` Substitute `x=0` `=` `0-0-3` `y` `=` `-3` Simply connect the points to form a parabola -
Question 3 of 4
3. Question
Graph the function`y=-x^2+2x+15`Hint
Help VideoCorrect
Well Done!
Incorrect
Axis of Symmetry
$$x=\frac{-\color{#9a00c7}{b}}{2\color{#00880A}{a}}$$First, find the `x` values by factoring using cross method`(x+3)(-x+5)` `=` `0` `x+3` `=` `0` `x+3``-3` `=` `0``-3` `x` `=` `-3` `-x+5` `=` `0` `-x+5``+x` `=` `0``+x` `5` `=` `x` `x` `=` `5` Mark these `2` points on the `x` axisNext, find the axis of symmetry and add it to the graph`y=-x^2+2x+15``a=-1` `b=2` `c=15``x` `=` $$\frac{-\color{#9a00c7}{b}}{2\color{#00880A}{a}}$$ Axis of Symmetry `x` `=` $$\frac{-\color{#9a00c7}{2}}{2\color{#00880A}{(-1)}}$$ Substitute values `x` `=` `(-2)/(-2)` `x` `=` `1` Now, substitute `x=1` to the equation to know where the graph intersects the axis of symmetry`y` `=` `-x^2+2x+15` `=` `-(1)^2+2(1)+15` Substitute `x=1` `=` `-1+2+15` `y` `=` `16` Finally, substitute `x=0` to find where graph intersects the `y` axis`y` `=` `-x^2+2x+15` `=` `-0^2+2(0)+15` Substitute `x=0` `=` `-0+0+15` `y` `=` `15` Simply connect the points to form a parabola -
Question 4 of 4
4. Question
Graph the function`y=-x^2+3x-5`Hint
Help VideoCorrect
Correct!
Incorrect
Axis of Symmetry
$$x=\frac{-\color{#9a00c7}{b}}{2\color{#00880A}{a}}$$The Quadratic Formula
$$x=\frac {-\color{#9a00c7}{b} \pm \sqrt {\color{#9a00c7}{b}^2-4\color{#00880A}{a}\color{#007DDC}{c}} }{2 \color{#00880A}{a}}$$First, find the `x` values using the quadratic formula`y=-x^2+3x-5``a=-1` `b=3` `c=-5``x` `=` $$\frac {-\color{#9a00c7}{b} \pm \sqrt {\color{#9a00c7}{b}^2-4\color{#00880A}{a}\color{#007DDC}{c}} }{2 \color{#00880A}{a}}$$ Quadratic Formula `=` $$\frac {- \color{#9a00c7}{3} \pm \sqrt {\color{#9a00c7}{3}^2-4\color{#00880A}{(-1)}\color{#007DDC}{(-5)}} }{2 \color{#00880A}{(-1)}}$$ Plug in the values of `a, b` and `c` `=` $$\frac {-3 \pm \sqrt {9 -20} }{-2}$$ `=` $$\frac {-3 \pm \sqrt {-11} }{-2}$$ Remember that a negative value inside a surd gives out imaginary roots, hence `x` has no solutionThis means the graph does not touch the `x` axisNext, find the axis of symmetry`a=-1` `b=3` `c=-5``x` `=` $$\frac{-\color{#9a00c7}{b}}{2\color{#00880A}{a}}$$ Axis of Symmetry `x` `=` $$\frac{-\color{#9a00c7}{3}}{2\color{#00880A}{(-1)}}$$ Substitute values `x` `=` `(-3)/(-2)` `x` `=` `3/2` Now, substitute `x=3/2` to the equation to know where the graph intersects the axis of symmetry`y` `=` `-x^2+3x-5` `=` `-9/4+9/2-5` Substitute `x=3/2` `y` `=` `-2 3/4` Finally, substitute `x=0` to find where graph intersects the `y` axis`y` `=` `-x^2+3x-5` `=` `-0^2+3(0)-5` Substitute `x=0` `=` `-0+0-5` `y` `=` `-5` Simply connect the points to form a parabola
Quizzes
- Sum & Product of Roots 1
- Sum & Product of Roots 2
- Sum & Product of Roots 3
- Sum & Product of Roots 4
- Solving Equations by Factoring 1
- Solving Equations Using the Quadratic Formula
- Completing the Square 1
- Completing the Square 2
- Intro to Quadratic Functions (Parabolas) 1
- Intro to Quadratic Functions (Parabolas) 2
- Intro to Quadratic Functions (Parabolas) 3
- Graph Quadratic Functions in Standard Form 1
- Graph Quadratic Functions in Standard Form 2
- Graph Quadratic Functions by Completing the Square
- Graph Quadratic Functions in Vertex Form
- Write a Quadratic Equation from the Graph
- Write a Quadratic Equation Given the Vertex and Another Point
- Quadratic Inequalities 1
- Quadratic Inequalities 2
- Quadratics Word Problems 1
- Quadratics Word Problems 2
- Quadratic Identities
- Graphing Quadratics Using the Discriminant
- Positive and Negative Definite
- Applications of the Discriminant 1
- Applications of the Discriminant 2
- Solving Reducible Equations