Index Notation 1
Try VividMath Premium to unlock full access
Time limit: 0
Quiz summary
0 of 5 questions completed
Questions:
- 1
- 2
- 3
- 4
- 5
Information
–
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading...
You must sign in or sign up to start the quiz.
You have to finish following quiz, to start this quiz:
Loading...
- 1
- 2
- 3
- 4
- 5
- Answered
- Review
-
Question 1 of 5
1. Question
Simplify`y xx y xx y xx y xx y xx y`Hint
Help VideoCorrect
Well Done!
Incorrect
Product of Powers
$${\color{#00880A}{a}^m}\times{\color{#00880A}{a}^n}=\color{#00880A}{a}^{m+n}$$Notice the bases are the same `(y)`.Since we are multiplying the bases, add the powers.Any base without a power means to the power of `1`.`y xx y xx y xx y xx y xx y` `=` $$\color{#00880A}{y}^1 \times \color{#00880A}{y}^1 \times \color{#00880A}{y}^1 \times \color{#00880A}{y}^1 \times \color{#00880A}{y}^1 \times \color{#00880A}{y}^1$$ `=` $$\color{#00880A}{y}^{1+1+1+1+1+1}$$ Use the Product of Powers `=` `y^6` `y^6` -
Question 2 of 5
2. Question
Simplify`2 xx 2 xx 2 xx 2 xx a xx a xx a`Hint
Help VideoCorrect
Great Work!
Incorrect
Product of Powers
$${\color{#00880A}{a}^m}\times{\color{#00880A}{a}^n}=\color{#00880A}{a}^{m+n}$$Using the Product of Powers, bring similar bases together.Remember that any base without a power means to the power of `1`.`2 xx 2 xx 2 xx 2 xx a xx a xx a` `=` `2^1``xx``2^1``xx``2^1``xx``2^1``xx``a^1``xx``a^1``xx``a^1` `=` $$\color{#00880A}{2}^{1+1+1+1} \times \color{#9a00c7}{a}^{1+1+1}$$ `=` $$\color{#00880A}{2}^4 \times \color{#9a00c7}{a}^3$$ `=` `2^4 a^3` Simplify further by changing `2^4` to its full value.`=` `2^4 a^3` `=` `(2xx2xx2xx2)a^3` `=` `16a^3` `16a^3` -
Question 3 of 5
3. Question
Simplify`f xx f xx f xx 5f`Hint
Help VideoCorrect
Correct!
Incorrect
Product of Powers
$${\color{#00880A}{a}^m}\times{\color{#00880A}{a}^n}=\color{#00880A}{a}^{m+n}$$First, separate the numbers and the variables.`f xx f xx f xx 5f` `=` `f xx f xx f xx 5 xx f` Next, using the Product of Powers, bring similar bases together.Remember that any base without a power means to the power of `1`.`f xx f xx f xx 5 xx f` `=` `f^1``xx``f^1``xx``f^1``xx``5^1``xx``f^1` `=` $$\color{#00880A}{f}^{1+1+1+1} \times \color{#9a00c7}{5}$$ `=` $$\color{#00880A}{f}^4 \times \color{#9a00c7}{5}$$ `=` `5f^4` `5f^4` -
Question 4 of 5
4. Question
Simplify`p xx q xx p xx q xx p`Hint
Help VideoCorrect
Keep Going!
Incorrect
Product of Powers
$${\color{#00880A}{a}^m}\times{\color{#00880A}{a}^n}=\color{#00880A}{a}^{m+n}$$First, put the same bases together.`p xx q xx p xx q xx p` `=` `p xx p xx p xx q xx q` Next, using the Product of Powers, bring similar bases together.Remember that any base without a power means to the power of `1`.`p xx p xx p xx q xx q` `=` `p^1``xx``p^1``xx``p^1``xx``q^1``xx``q^1` `=` $$\color{#00880A}{p}^{1+1+1} \times \color{#9a00c7}{q}^{1+1}$$ `=` $$\color{#00880A}{p}^3 \times \color{#9a00c7}{q}^2$$ `=` `p^3 q^2` `p^3 q^2` -
Question 5 of 5
5. Question
Simplify`7 xx s xx s xx s xx 2`Hint
Help VideoCorrect
Well Done!
Incorrect
Product of Powers
$${\color{#00880A}{a}^m}\times{\color{#00880A}{a}^n}=\color{#00880A}{a}^{m+n}$$First, bring like terms together.`7 xx s xx s xx s xx 2` `=` `7 xx 2 xx s xx s xx s` Next, using the Product of Powers, bring similar bases together.Remember that any base without a power means to the power of `1`.`7 xx 2 xx s xx s xx s` `=` `7^1``xx``2^1``xx``s^1``xx``s^1``xx``s^1` `=` $$\color{#00880A}{14} \times \color{#9a00c7}{s}^{1+1+1}$$ `=` $$\color{#00880A}{14} \times \color{#9a00c7}{s}^3$$ `=` `14s^3` `14s^3`
Quizzes
- Index Notation 1
- Index Notation 2
- Index Notation 3
- Multiply Indices 1
- Multiply Indices 2
- Multiply Indices 3
- Multiply Indices 4
- Divide Indices 1
- Divide Indices 2
- Powers of a Power 1
- Powers of a Power 2
- Powers of a Power 3
- Powers of a Power 4
- Zero Powers 1
- Zero Powers 2
- Negative Indices 1
- Negative Indices 2
- Negative Indices 3
- Fractional Indices 1
- Fractional Indices 2
- Fractional Indices 3
- Mixed Operations with Indices 1
- Mixed Operations with Indices 2