>
Year 12>
Transformations of Functions>
Combinations of Transformations: Coordinates>
Combinations of Transformations: CoordinatesCombinations of Transformations: Coordinates
Try VividMath Premium to unlock full access
Quiz summary
0 of 3 questions completed
Questions:
- 1
- 2
- 3
Information
–
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading...
You must sign in or sign up to start the quiz.
You have to finish following quiz, to start this quiz:
- 1
- 2
- 3
- Answered
- Review
-
Question 1 of 3
1. Question
`(5,-2)` lies on `y=f(x)`. Find the coordinates of the image point when the function is transformed into `y=6f(x+1)+8`.
Correct
Great Work!
Incorrect
A standard function form (universal formula) for translations and dilations is `y=color(red)(k)f(color(blue)(a)(x+color(purple)(b)))+color(green)(c)` where the image point is transformed from `(color(orange)(x),color(brown)(y))` into `(color(blue)(a)(color(orange)(x)+color(purple)(b)),color(red)(k)color(brown)(y)+color(green)(c))`.To find the coordinates of the image point when the function is transformed into `y=color(red)(6)f(xcolor(purple)(+1))color(green)(+8)`, identify that `color(red)(k=6)`, `color(purple)(b=-1)`, `color(green)(c=8)`.Now transform the image point using `y=color(red)(k)f(color(blue)(a)(x+color(purple)(b)))+color(green)(c)` where the image point is transformed from `(color(orange)(x),color(brown)(y))` into `(color(blue)(a)(color(orange)(x)+color(purple)(b)),color(red)(k)color(brown)(y)+color(green)(c))`, and `(color(orange)(5),color(brown)(-2))` is the original point, `color(red)(k=6)`, `color(purple)(b=-1)`, `color(green)(c=8)`.The new image point is `(color(blue)(1)(color(orange)(5) color(purple)(-1)),(color(red)(6))(color(brown)(-2))+color(green)((8)))` which simplifies to `(4,-4)`.`(4,-4)` -
Question 2 of 3
2. Question
`(3,-2)` lies on `y=f(x)`. Find the coordinates of the image point when the function is transformed into `y=4f(-x)-9`.
Correct
Great Work!
Incorrect
A standard function form (universal formula) for translations and dilations is `y=color(red)(k)f(color(blue)(a)(x+color(purple)(b)))+color(green)(c)` where the image point is transformed from `(color(orange)(x),color(brown)(y))` into `(color(blue)(a)(color(orange)(x)+color(purple)(b)),color(red)(k)color(brown)(y)+color(green)(c))`.To find the coordinates of the image point when the function is transformed into `y=color(red)(4)f(color(blue)(-)x)color(green)(-9)`, identify that `color(red)(k=4)`, `color(blue)(a=-1)`, `color(purple)(b=0)`, and `color(green)(c=-9)`.Now transform the image point using `y=color(red)(k)f(color(blue)(a)(x+color(purple)(b)))+color(green)(c)` where the image point is transformed from `(color(orange)(x),color(brown)(y))` into `(color(blue)(a)(color(orange)(x)+color(purple)(b)),color(red)(k)color(brown)(y)+color(green)(c))`, and `(color(orange)(3),color(brown)(-2))` is the original point, `color(red)(k=4)`, `color(blue)(a=-1)`, `color(purple)(b=0)`, and `color(green)(c=-9)`.The new image point is `(color(blue)(-1)(color(orange)(3)+color(purple)(0)),(color(red)(4))(color(brown)(-2))+color(green)((-9)))` which simplifies to `(-3,-17)`.`(-3,-17)` -
Question 3 of 3
3. Question
`(12,-1)` lies on `y=f(x)`. Find the coordinates of the image point when the function is transformed into `y=-5f(3x-6)-4`.
Correct
Great Work!
Incorrect
A standard function form (universal formula) for translations and dilations is `y=color(red)(k)f(color(blue)(a)(x+color(purple)(b)))+color(green)(c)` where the image point is transformed from `(color(orange)(x),color(brown)(y))` into `(color(blue)(a)(color(orange)(x)+color(purple)(b)),color(red)(k)color(brown)(y)+color(green)(c))`.To find the coordinates of the image point when the function is transformed into `y=color(red)(-5)f(color(blue)(3)x color(purple)(-6))color(green)(-4)`, identify that `color(red)(k=-5)`, `color(blue)(a=3)`, `color(purple)(b=-6)`, and `color(green)(c=-4)`.Now transform the image point using `y=color(red)(k)f(color(blue)(a)(x+color(purple)(b)))+color(green)(c)` where the image point is transformed from `(color(orange)(x),color(brown)(y))` into `(color(blue)(a)(color(orange)(x)+color(purple)(b)),color(red)(k)color(brown)(y)+color(green)(c))`, and `(color(orange)(12),color(brown)(-1))` is the original point, `color(red)(k=-5)`, `color(blue)(a=3)`, `color(purple)(b=-6)`, and `color(green)(c=-4)`.The new image point is `(color(blue)(-4)((color(blue)(3))(color(orange)(12))+color(purple)(-6)),(color(red)(-5))(color(brown)(-1))+color(green)((-4)))` which simplifies to `(6,1)`.`(6,1)`
Quizzes
- Vertical Translations 1
- Vertical Translations 2
- Vertical Translations from a Point
- Horizontal Translations 1
- Horizontal Translations 2
- Horizontal Translations from a Point
- Horizontal Translations from a Graph
- Horizontal and Vertical Translations from a Graph
- Sketch a Graph using Translations
- Write the Equation from a Graph
- Write the Equation from Translations
- Vertical Dilations
- Horizontal Dilations 1
- Horizontal Dilations 2
- Horizontal Dilations – Scale Factor
- Horizontal and Vertical Dilations 1
- Horizontal and Vertical Dilations 2
- Horizontal and Vertical Dilations 3
- Graphing Reflections 1
- Graphing Reflections 2
- Reflection with Rotation
- Combinations of Transformations: Order
- Combinations of Transformations: Coordinates
- Combinations of Transformations: Find Equation 1
- Combinations of Transformations: Find Equation 2
- Combinations of Transformations: Find Equation 3