Years
>
Year 11>
Trigonometric Identities>
Simplifying Trigonometric Identities>
Simplifying Trigonometric IdentitiesSimplifying Trigonometric Identities
Try VividMath Premium to unlock full access
Time limit: 0
Quiz summary
0 of 7 questions completed
Questions:
- 1
- 2
- 3
- 4
- 5
- 6
- 7
Information
–
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading...
You must sign in or sign up to start the quiz.
You have to finish following quiz, to start this quiz:
Loading...
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- Answered
- Review
-
Question 1 of 7
1. Question
Which of the following are trigonometric identities?- 1.
-
2.
sec2θ=1+sin2θsec2θ=1+sin2θ -
3.
sec2θ=1+tan2θsec2θ=1+tan2θ -
4.
csc2θ=cot2θ+1csc2θ=cot2θ+1
Hint
Help VideoCorrect
Well Done!
Incorrect
Need TextPlayCurrent Time 0:00/Duration Time 0:00Remaining Time -0:00Stream TypeLIVELoaded: 0%Progress: 0%0:00Fullscreen00:00MutePlayback Rate1x- 2x
- 1.5x
- 1.25x
- 1x
- 0.75x
- 0.5x
Subtitles- subtitles off
Captions- captions off
- English
Chapters- Chapters
Trigonometric Identities
secθ=1cosθsecθ=1cosθcscθ=1sinθcscθ=1sinθcotθ=1tanθcotθ=1tanθtanθ=sinθcosθtanθ=sinθcosθcotθ=cosθsinθcotθ=cosθsinθUsing the given image, we can see that the radius of the circle will be 11. Therefore, the circle follows the formula x2+y2=1x2+y2=1, where 11 is the radius.Make a reference triangle by making a line from the point of origin (0,0)(0,0) going to any point in the circle to represent the radius and connect it to either the x or y-axisNotice that, given angle θθ, the circle has the vertical line parallel to the y-axis as its opposite side and the line on the x-axis as the adjacent sideNow that we have the opposite and adjacent sides and the radius 11 as the hypotenuse, we can use the trigonometric functions to find their respective valuessinsin == oppositehypotenuseoppositehypotenuse == y1y1 == yy coscos == adjacenthypotenuseadjacenthypotenuse == x1x1 == xx xx and yy are both coordinate values, so we can write the coordinates as (cosθ,sinθ)(cosθ,sinθ)Finally, use the values of xx and yy and derive its trigonometric identitiesx2+y2x2+y2 == 11 cos2θ+sin2θcos2θ+sin2θ == 11 Substitute known values (cos2θ+sin2θ)(cos2θ+sin2θ)÷cos2θ÷cos2θ == 11÷cos2θ÷cos2θ Divide both sides by cos2θcos2θ 1+sin2θcos2θ1+sin2θcos2θ == 1cos2θ1cos2θ 1+1+tan2θtan2θ == 1cos2θ1cos2θ sin2θcos2θ=tan2θsin2θcos2θ=tan2θ 1+tan2θ1+tan2θ == sec2θsec2θ 1cos2θ=sec2θ1cos2θ=sec2θ sec2θsec2θ == 1+tan2θ1+tan2θ x2+y2x2+y2 == 11 cos2θ+sin2θcos2θ+sin2θ == 11 Substitute known values (cos2θ+sin2θ)(cos2θ+sin2θ)÷sin2θ÷sin2θ == 11÷sin2θ÷sin2θ Divide both sides by sin2θsin2θ cos2θsin2θ+1cos2θsin2θ+1 == 1sin2θ1sin2θ cot2θcot2θ+1+1 == 1sin2θ1sin2θ cos2θsin2θ=cot2θcos2θsin2θ=cot2θ cot2θ+1cot2θ+1 == csc2θcsc2θ 1sin2θ=csc2θ1sin2θ=csc2θ csc2θcsc2θ == cot2θ+1cot2θ+1 sec2θ=1+tan2θsec2θ=1+tan2θcsc2θ=cot2θ+1csc2θ=cot2θ+1 -
Question 2 of 7
2. Question
Simplify11+sinθ+11-sinθ11+sinθ+11−sinθ-
1.
2sec2θ2sec2θ -
2.
2sec2θ2sec2θ -
3.
csc2θ+2csc2θ+2 -
4.
csc2θcsc2θ
Hint
Help VideoCorrect
Nice Job!
Incorrect
Need TextPlayCurrent Time 0:00/Duration Time 0:00Remaining Time -0:00Stream TypeLIVELoaded: 0%Progress: 0%0:00Fullscreen00:00MutePlayback Rate1x- 2x
- 1.5x
- 1.25x
- 1x
- 0.75x
- 0.5x
Subtitles- subtitles off
Captions- captions off
- English
Chapters- Chapters
Trigonometric Identities
secθ=1cosθsecθ=1cosθcscθ=1sinθcscθ=1sinθcotθ=1tanθcotθ=1tanθtanθ=sinθcosθtanθ=sinθcosθcotθ=cosθsinθcotθ=cosθsinθApply the rule of adding fractions and simplify the expression11+sinθ+11-sinθ11+sinθ+11−sinθ == 1-sinθ+1+sinθ(1+sinθ)(1-sinθ)1−sinθ+1+sinθ(1+sinθ)(1−sinθ) == 2(1+sinθ)(1-sinθ)2(1+sinθ)(1−sinθ) Combine like terms == 21-sin2θ21−sin2θ Expand Recall that sin2θ+cos2θ=1sin2θ+cos2θ=1. Derive this formula to further simplify the expressionsin2θ+cos2θsin2θ+cos2θ == 11 sin2θ+cos2θsin2θ+cos2θ -sin2θ−sin2θ == 11 -sin2θ−sin2θ Subtract sin2θsin2θ from both sides cos2θcos2θ == 1-sin2θ1−sin2θ 21-sin2θ21−sin2θ == 2cos2θ2cos2θ 1-sin2θ=cos2θ1−sin2θ=cos2θ == 21×1cos2θ21×1cos2θ Take out 22 == 2×sec2θ2×sec2θ 1cos2θ=sec2θ1cos2θ=sec2θ == 2sec2θ2sec2θ 2sec2θ2sec2θ -
1.
-
Question 3 of 7
3. Question
Simplifytanθsecθtanθsecθ-
1.
cos θcos θ -
2.
sin θsin θ -
3.
1tan θ1tan θ -
4.
2sec θ2sec θ
Hint
Help VideoCorrect
Excellent!
Incorrect
Need TextPlayCurrent Time 0:00/Duration Time 0:00Remaining Time -0:00Stream TypeLIVELoaded: 0%Progress: 0%0:00Fullscreen00:00MutePlayback Rate1x- 2x
- 1.5x
- 1.25x
- 1x
- 0.75x
- 0.5x
Subtitles- subtitles off
Captions- captions off
- English
Chapters- Chapters
Trigonometric Identities
secθ=1cosθsecθ=1cosθcscθ=1sinθcscθ=1sinθcotθ=1tanθcotθ=1tanθtanθ=sinθcosθtanθ=sinθcosθcotθ=cosθsinθcotθ=cosθsinθSubstitute known values to tantan and secsectantan == sincossincos secsec == 1cos1cos tan θsec θtan θsec θ == sincos1cossincos1cos Substitute known values == sin θsin θ Apply rule of dividing fractions sin θsin θ -
1.
-
Question 4 of 7
4. Question
Simplifysecθ-secθsin2θsecθ−secθsin2θ-
1.
csc θcsc θ -
2.
sin θsin θ -
3.
sec θsec θ -
4.
cos θcos θ
Hint
Help VideoCorrect
Fantastic!
Incorrect
Need TextPlayCurrent Time 0:00/Duration Time 0:00Remaining Time -0:00Stream TypeLIVELoaded: 0%Progress: 0%0:00Fullscreen00:00MutePlayback Rate1x- 2x
- 1.5x
- 1.25x
- 1x
- 0.75x
- 0.5x
Subtitles- subtitles off
Captions- captions off
- English
Chapters- Chapters
Trigonometric Identities
secθ=1cosθsecθ=1cosθcscθ=1sinθcscθ=1sinθcotθ=1tanθcotθ=1tanθtanθ=sinθcosθtanθ=sinθcosθcotθ=cosθsinθcotθ=cosθsinθFactor out sec θsec θ on both termssec θ-sec θ sin2θsec θ−sec θ sin2θ == sec θ(1-sin2θ)sec θ(1−sin2θ) Factorise Recall that sin2θ+cos2θ=1sin2θ+cos2θ=1. Derive this formula to further simplify the expressionsin2θ+cos2θsin2θ+cos2θ == 11 sin2θ+cos2θsin2θ+cos2θ -sin2θ−sin2θ == 11 -sin2θ−sin2θ Subtract sin2θsin2θ from both sides cos2θcos2θ == 1-sin2θ1−sin2θ sec θ(1-sin2θ)sec θ(1−sin2θ) == sec θ(cos2θ)sec θ(cos2θ) 1-sin2θ=cos2θ1−sin2θ=cos2θ == 1cos θ⋅(cos2θ)1cos θ⋅(cos2θ) sec θ=1cos θsec θ=1cos θ = cos2θcos θ = cos θ cos θ -
1.
-
Question 5 of 7
5. Question
Simplifysec2A-csc2A-
1.
(sec A-csc A)(sec A+csc A) -
2.
(sec A+csc A)(sec A+csc A) -
3.
(sec A-csc A)(sec A-csc A) -
4.
A(sec A+csc A)
Hint
Help VideoCorrect
Keep Going!
Incorrect
Need TextPlayCurrent Time 0:00/Duration Time 0:00Remaining Time -0:00Stream TypeLIVELoaded: 0%Progress: 0%0:00Fullscreen00:00MutePlayback Rate1x- 2x
- 1.5x
- 1.25x
- 1x
- 0.75x
- 0.5x
Subtitles- subtitles off
Captions- captions off
- English
Chapters- Chapters
The difference of two squares is a format of a quadratic expression where there are two terms that are both perfect squares.First, find the square of the two terms.First termsec2A = sec A⋅sec A Second termcsc2A = csc A⋅csc A Finally, get the sum and difference of the two values.(sec A-csc A)(sec A+csc A) (sec A-csc A)(sec A+csc A) -
1.
-
Question 6 of 7
6. Question
Simplifytan2θsecθ-1-
1.
-1secθ -
2.
1secθ -
3.
secθ-1 -
4.
secθ+1
Hint
Help VideoCorrect
Correct!
Incorrect
Need TextPlayCurrent Time 0:00/Duration Time 0:00Remaining Time -0:00Stream TypeLIVELoaded: 0%Progress: 0%0:00Fullscreen00:00MutePlayback Rate1x- 2x
- 1.5x
- 1.25x
- 1x
- 0.75x
- 0.5x
Subtitles- subtitles off
Captions- captions off
- English
Chapters- Chapters
Trigonometric Identities
secθ=1cosθcscθ=1sinθcotθ=1tanθtanθ=sinθcosθcotθ=cosθsinθRecall that 1+tan2θ=sec2θ. Derive this formula to further simplify the expression1+tan2θ = sec2θ 1+tan2θ -1 = sec2θ -1 Subtract 1 from both sides tan2θ = sec2θ-1 tan2θsecθ-1 = sec2θ-1secθ-1 tan2θ=sec2θ-1 = (secθ-1)(secθ+1)secθ-1 Factorise = secθ+1 secθ-1secθ-1=1 secθ+1 -
1.
-
Question 7 of 7
7. Question
Simplify(tan2β)(cot2β+1)tan2β+1- (1)
Hint
Help VideoCorrect
Great Work!
Incorrect
Need TextPlayCurrent Time 0:00/Duration Time 0:00Remaining Time -0:00Stream TypeLIVELoaded: 0%Progress: 0%0:00Fullscreen00:00MutePlayback Rate1x- 2x
- 1.5x
- 1.25x
- 1x
- 0.75x
- 0.5x
Subtitles- subtitles off
Captions- captions off
- English
Chapters- Chapters
Trigonometric Identities
secθ=1cosθcscθ=1sinθcotθ=1tanθtanθ=sinθcosθcotθ=cosθsinθRecall that 1+cot2θ=csc2θ. Derive this formula to further simplify the expression(tan2β)(cot2β+1)tan2β+1 = tan2β⋅csc2θtan2β+1 1+cot2θ=csc2θ Finally, substitute known values to tan, csc, and sectan = sincos csc = 1sin sec = 1cos tan2β⋅csc2θtan2β+1 = sin2βcos2β⋅1csc2θ1cos2θ Substitute known values = sin2βcos2β⋅1csc2θ⋅cos2θ1 Apply rule of dividing fractions = 1 1