Multiplying Matrices 1
Try VividMath Premium to unlock full access
Time limit: 0
Quiz summary
0 of 4 questions completed
Questions:
- 1
- 2
- 3
- 4
Information
–
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading...
You must sign in or sign up to start the quiz.
You have to finish following quiz, to start this quiz:
Loading...
- 1
- 2
- 3
- 4
- Answered
- Review
-
Question 1 of 4
1. Question
Solve for `2A` given that:`A=[[6,-14],[18,10]]`Hint
Help VideoCorrect
Well Done!
Incorrect
A constant multiplied to a matrix is simply distributed to each of the elements.Substitute matrix `A` to `2A` and solve.`A=[[6,-14],[18,10]]``2A` `=` `2[[6,-14],[18,10]]` Substitute `A` `=` `[[2xx6,2xx-14],[2xx18,2xx10]]` Distribute `2` `=` `[[12,-28],[36,20]]` `[[12,-28],[36,20]]` -
Question 2 of 4
2. Question
Solve for `-1/2A` given that:`A=[[6,-14],[18,10]]`Hint
Help VideoCorrect
Nice Job!
Incorrect
A constant multiplied to a matrix is simply distributed to each of the elements.Substitute matrix `A` to `-1/2A` and solve.`A=[[6,-14],[18,10]]``-1/2A` `=` `-1/2[[6,-14],[18,10]]` Substitute `A` `=` \begin{bmatrix}
-\frac{1}{2}\times6 & -\frac{1}{2}\times-14 \\[0.3em]
-\frac{1}{2}\times18 & -\frac{1}{2}\times10 \\
\end{bmatrix}Distribute `-1/2` `=` `[[-3,7],[-9,-5]]` `[[-3,7],[-9,-5]]` -
Question 3 of 4
3. Question
Solve`[[1,3,2]]times[[6,1,0],[0,3,1],[1,2,2]]`Hint
Help VideoCorrect
Excellent!
Incorrect
Multiplying Two Matrices
`[[a,b,c]]xx[[p],[q],[r]]=ap+bq+cr`Two matrices can be multiplied only if the number of columns (`n`) in the first matrix is equal to the number of rows
(`m`) in the second matrix.First, check the dimensions of each matrixMatrix `1`:`[[1,3,2]]`rows(`m`)`=1`columns(`n`)`=3`Dimension`(mtimesn)=1xx``3`Matrix `2`:`[[6,1,0],[0,3,1],[1,2,2]]`rows(`m`)`=3`columns(`n`)`=3`Dimension`(mtimesn)=``3``xx3`Since the number of columns in the first matrix (`3`) and the number of rows in the second matrix
(`3`) are equal, these two matrices can be multipliedNext, proceed with multiplying the two matrices`[[1,3,2]]times``[[6,1,0],[0,3,1],[1,2,2]]` `=` \begin{bmatrix}
((1\cdot\color{#9a00c7}{6})+(3\cdot\color{#9a00c7}{0})+(2\cdot\color{#9a00c7}{1})) & ((1\cdot\color{#9a00c7}{1})+(3\cdot\color{#9a00c7}{3})+(2\cdot\color{#9a00c7}{2})) & ((1\cdot\color{#9a00c7}{0})+(3\cdot\color{#9a00c7}{1})+(2\cdot\color{#9a00c7}{2})) \\
\end{bmatrix}`=` `[[6+0+2,1+9+4,0+3+4]]` `=` `[[8,14,7]]` `[[8,14,7]]` -
Question 4 of 4
4. Question
Solve`[[2,6,-2,7],[1,0,3,1]]times[[3],[-1],[4],[6]]`Hint
Help VideoCorrect
Fantastic!
Incorrect
Multiplying Two Matrices
`[[a,b,c]]xx[[p],[q],[r]]=ap+bq+cr`Two matrices can be multiplied only if the number of columns (`n`) in the first matrix is equal to the number of rows
(`m`) in the second matrix.First, check the dimensions of each matrixMatrix `1`:`[[2,6,-2,7],[1,0,3,1]]`rows(`m`)`=2`columns(`n`)`=4`Dimension`(mtimesn)=2xx``4`Matrix `2`:`[[3],[-1],[4],[6]]`rows(`m`)`=4`columns(`n`)`=1`Dimension`(mtimesn)=``4``xx1`Since the number of columns in the first matrix (`4`) and the number of rows in the second matrix
(`4`) are equal, these two matrices can be multipliedNext, proceed with multiplying the two matrices`[[2,6,-2,7],[1,0,3,1]]times``[[3],[-1],[4],[6]]` `=` \begin{bmatrix}
(2\cdot\color{#9a00c7}{3})+(6\cdot\color{#9a00c7}{-1})+(-2\cdot\color{#9a00c7}{4})+(7\cdot\color{#9a00c7}{6}) \\[0.3em]
(1\cdot\color{#9a00c7}{3})+(0\cdot\color{#9a00c7}{-1})+(3\cdot\color{#9a00c7}{4})+(1\cdot\color{#9a00c7}{6})
\end{bmatrix}`=` `[[6+(-6)+(-8)+42],[3+0+12+6]]` `=` `[[34],[21]]` `[[34],[21]]`
Quizzes
- Adding & Subtracting Matrices 1
- Adding & Subtracting Matrices 2
- Adding & Subtracting Matrices 3
- Multiplying Matrices 1
- Multiplying Matrices 2
- Multiplication Word Problems
- Determinant of a Matrix
- Inverse of a Matrix
- Solving Systems of Equations 1
- Solving Systems of Equations 2
- Gauss Jordan Elimination
- Cramer’s Rule