Power Rule 1
Try VividMath Premium to unlock full access
Time limit: 0
Quiz summary
0 of 5 questions completed
Questions:
- 1
- 2
- 3
- 4
- 5
Information
–
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading...
You must sign in or sign up to start the quiz.
You have to finish following quiz, to start this quiz:
Loading...
- 1
- 2
- 3
- 4
- 5
- Answered
- Review
-
Question 1 of 5
1. Question
Find the derivative`f(x)=x^8`Hint
Help VideoCorrect
Great Work!
Incorrect
Power Rule
$$f'(x)=\color{#e65021}{n}\color{#9a00c7}{x}^{\color{#e65021}{n}-1}$$First, identify the values of the function`f(x)` `=` $$\color{#9a00c7}{x}^{\color{#e65021}{n}}$$ `f(x)` `=` $$\color{#9a00c7}{x}^{\color{#e65021}{8}}$$ `x` `=` `x` `n` `=` `8` Substitute the values into the power rule`f'(x)` `=` $$\color{#e65021}{n}\color{#9a00c7}{x}^{\color{#e65021}{n}-1}$$ `=` $$\color{#e65021}{8}\cdot\color{#9a00c7}{x}^{\color{#e65021}{8}-1}$$ Substitute known values `=` `8x^7` `f'(x)=8x^7` -
Question 2 of 5
2. Question
Find the derivative`f(x)=3x`Hint
Help VideoCorrect
Correct!
Incorrect
Power Rule
$$f'(x)=\color{#e65021}{n}\color{#9a00c7}{x}^{\color{#e65021}{n}-1}$$First, identify the values of the function`f(x)` `=` $$\color{#9a00c7}{x}^{\color{#e65021}{n}}$$ `f(x)` `=` $$\color{#9a00c7}{3x}^{\color{#e65021}{1}}$$ `x` `=` `3x` `n` `=` `1` Substitute the values into the power rule`f'(x)` `=` $$\color{#e65021}{n}\color{#9a00c7}{x}^{\color{#e65021}{n}-1}$$ `=` $$\color{#e65021}{1}\cdot\color{#9a00c7}{3x}^{\color{#e65021}{1}-1}$$ Substitute known values `=` `3x^0` `=` `3xx1` Anything raised to `0` is `1` `=` `3` `f'(x)=3` -
Question 3 of 5
3. Question
Find the derivative`f(x)=x^3+x^4`Hint
Help VideoCorrect
Keep Going!
Incorrect
Power Rule
$$f'(x)=\color{#e65021}{n}\color{#9a00c7}{x}^{\color{#e65021}{n}-1}$$First, identify the values of the functionFirst term:`f(x)` `=` $$\color{#9a00c7}{x}^{\color{#e65021}{n}}$$ `f(x)` `=` $$\color{#9a00c7}{x}^{\color{#e65021}{3}}+x^4$$ `x` `=` `x` `n` `=` `3` Second term:`f(x)` `=` $$\color{#9a00c7}{x}^{\color{#e65021}{n}}$$ `f(x)` `=` $$x^3+\color{#9a00c7}{x}^{\color{#e65021}{4}}$$ `x` `=` `x` `n` `=` `4` Substitute the values into the power ruleFirst term:`f'(x)` `=` $$\color{#e65021}{n}\color{#9a00c7}{x}^{\color{#e65021}{n}-1}$$ `=` $$\color{#e65021}{3}\cdot\color{#9a00c7}{x}^{\color{#e65021}{3}-1}+x^4$$ Substitute known values `=` `3x^2+x^4` Second term:`f'(x)` `=` $$\color{#e65021}{n}\color{#9a00c7}{x}^{\color{#e65021}{n}-1}$$ `=` $$3x^2+\color{#e65021}{4}\cdot\color{#9a00c7}{x}^{\color{#e65021}{4}-1}$$ Substitute known values `=` `3x^2+4x^3` `f'(x)=3x^2+4x^3` -
Question 4 of 5
4. Question
Find the derivative`f(x)=8`- `f'(x)=` (0)
Hint
Help VideoCorrect
Fantastic!
Incorrect
Power Rule
$$f'(x)=\color{#e65021}{n}\color{#9a00c7}{x}^{\color{#e65021}{n}-1}$$Remember
Differentiating a constant makes it `0`.First, identify the values of the function`f(x)` `=` $$\color{#9a00c7}{x}^{\color{#e65021}{n}}$$ `f(x)` `=` $$\color{#9a00c7}{8}$$ `x` `=` `8` The value of the function is a constant.Since differentiating a constant makes it `0`, the derivative of this function is `0`.`f'(x)=0` -
Question 5 of 5
5. Question
Find the derivative`f(x)=x^5+x^3+6`Hint
Help VideoCorrect
Excellent!
Incorrect
Power Rule
$$f'(x)=\color{#e65021}{n}\color{#9a00c7}{x}^{\color{#e65021}{n}-1}$$Remember
Differentiating a constant makes it `0`.First, identify the values of the functionFirst term:`f(x)` `=` $$\color{#9a00c7}{x}^{\color{#e65021}{n}}$$ `f(x)` `=` $$\color{#9a00c7}{x}^{\color{#e65021}{5}}+x^3+6$$ `x` `=` `x` `n` `=` `5` Second term:`f(x)` `=` $$\color{#9a00c7}{x}^{\color{#e65021}{n}}$$ `f(x)` `=` $$x^5+\color{#9a00c7}{x}^{\color{#e65021}{3}}+6$$ `x` `=` `x` `n` `=` `3` Third term:`f(x)` `=` $$\color{#9a00c7}{x}^{\color{#e65021}{n}}$$ `f(x)` `=` $$x^5+x^3+\color{#9a00c7}{6}$$ `x` `=` `6` Substitute the values into the power ruleFirst term:`f'(x)` `=` $$\color{#e65021}{n}\color{#9a00c7}{x}^{\color{#e65021}{n}-1}$$ `=` $$\color{#e65021}{5}\cdot\color{#9a00c7}{x}^{\color{#e65021}{5}-1}+x^3+6$$ Substitute known values `=` `5x^4+x^3+6` Second term:`f'(x)` `=` $$\color{#e65021}{n}\color{#9a00c7}{x}^{\color{#e65021}{n}-1}$$ `=` $$5x^4+\color{#e65021}{3}\cdot\color{#9a00c7}{x}^{\color{#e65021}{3}-1}+6$$ Substitute known values `=` `5x^4+3x^2+6` Third term:`f'(x)` `=` $$\color{#e65021}{n}\color{#9a00c7}{x}^{\color{#e65021}{n}-1}$$ `=` $$5x^4+3x^2+\color{#9a00c7}{0}$$ Differentiating a constant makes it `0` `=` `5x^4+3x^2` `f'(x)=5x^4+3x^2`