Simpsons Rule
Try VividMath Premium to unlock full access
Time limit: 0
Quiz summary
0 of 7 questions completed
Questions:
- 1
- 2
- 3
- 4
- 5
- 6
- 7
Information
–
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading...
You must sign in or sign up to start the quiz.
You have to finish following quiz, to start this quiz:
Loading...
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- Answered
- Review
-
Question 1 of 7
1. Question
Find the area under the curve `y=x^2/4`- `\text(Area) =` (4.6667) `\text(square units)`
Hint
Help VideoCorrect
Great Work!
Incorrect
Simpsons Rule
`int_a^b f(x) dx ≈ (b-a)/6 [f(a)+4f((a+b)/2)+f(b)]`First, construct a table of values for both `x` and `y` given the equation.`y=x^2/4``x` `2` `3` `4` `y` Substitute `x=2` into the given equation.`y` `=` $$\frac {\color{#9932CC}{2}^2}{4}$$ Substitute the value of `x` `=` `4/4` Simplify `y` `=` `1` `f(a)` `=` `1` `x` `2` `3` `4` `y` `1` Substitute `x=3` into the given equation.`y` `=` $$\frac {\color{#9932CC}{3}^2}{4}$$ Substitute the value of `x` `y` `=` `9/4` Simplify `f((a+b)/2)` `=` `9/4` `x` `2` `3` `4` `y` `1` `9/4` Repeat this process for each `\text(x-value)``x` `2` `3` `4` `y` `1` `9/4` `4` Apply Simpsons Rule`A` `≈` $$\int_{\color {#9a00c7}{a}}^{\color{#007ddc}{b}} f(x) dx$$ `≈` $$ \frac{\color{#007ddc}{b}- \color{#9a00c7}{a}}{6} [\color {#00880a}{f(a)} +4 \color{#00880a}{\frac{f(a+b)}{2}}+\color {#00880a}{f(b)}]$$ Simpsons Rule formula `≈` $$ \frac{\color{#007ddc}{4}- \color{#9a00c7}{2}}{6} [\color {#00880a}{1} +4 \color{#00880a}{(\frac{9}{4})}+\color {#00880a}{4}]$$ Substitute known values `≈` `2/6 [5+36/4]` Simplify `≈` `1/3 [14]` `≈` `14/3` `≈` `4.6667` `4.6667 \text(square units)` -
Question 2 of 7
2. Question
Find the area under the curve `y=2^x`- `\text(Area) =` (43.333)
Hint
Help VideoCorrect
Correct!
Incorrect
Simpsons Rule
`int_a^b f(x) dx ≈ h/3 [y_0+y_L+2(y_2+y_4+…)+4(y_1+y_3+…)]`First, find the values of `a`, `b` and `n` from the given equation$$\int_{\color{#9a00c7}{1}}^{\color{#007ddc}{5}} y$$ `=` `2^x` `a=1`(lower limit)`b=5`(upper limit)`n=4`(number of strips in given diagram)Solve for `h``h` `=` $$\frac {\color {#007ddc}{b}-\color {#9a00c7}{a}}{\color {#00880a}{n}} $$ `=` $$\frac {\color {#007ddc}{5}-\color {#9a00c7}{1}}{\color {#00880a}{4}} $$ Substitute values of `a`, `b`, and `n` `=` `4/4` Simplify `h` `=` `1` First, construct a table of values for both `x` and `y` given the equation.`y=2^x``x` `1` `2` `3` `4` `5` `y` Substitute `x=1` into the given equation.`y` `=` $$ 2^{\color{#9932CC}{1}}$$ Substitute the value of `x` `=` `2^1` Simplify `y_0` `=` `2` `x` `1` `2` `3` `4` `5` `y` `2` Substitute `x=2` into the given equation.`y` `=` $$2^{\color{#9932CC}{2}}$$ Substitute the value of `x` `y_1` `=` `4` Simplify `x` `1` `2` `3` `4` `5` `y` `2` `4` Repeat this process for each `\text(x-value)``x` `1` `2` `3` `4` `5` `y` `2` `4` `8` `16` `32` Apply Simpsons Rule`A` `≈` $$\int_{\color {#9a00c7}{a}}^{\color{#007ddc}{b}} f(x) dx$$ `≈` `h/3 [``y_0``+``y_L``+2(``y_2``+``y_4``+…)+4(``y_1``+``y_3``+…)]` Simpsons Rule formula `≈` `1/3 [``2``+``32``+2(``8``)+4(``4``+``16``)]` Substitute known values `≈` `1/3 [34+16+80]` Simplify `≈` `1/3 [130]` `≈` `(130)/3` `≈` `43.333` `43.333` -
Question 3 of 7
3. Question
Find the area under the curve `y=6/x`- `\text(Area) =` (4.159)
Hint
Help VideoCorrect
Keep Going!
Incorrect
Simpsons Rule
`int_a^b f(x) dx ≈ h/3 [y_0+y_L+2(y_2+y_4+…)+4(y_1+y_3+…)]`First, find the values of `a`, `b` and `n` from the given equation$$\int_{\color{#9a00c7}{3}}^{\color{#007ddc}{6}} y$$ `=` `6/x` `a=3`(lower limit)`b=6`(upper limit)`n=6`(number of strips in given diagram)Solve for `h``h` `=` $$\frac {\color {#007ddc}{b}-\color {#9a00c7}{a}}{\color {#00880a}{n}} $$ `=` $$\frac {\color {#007ddc}{6}-\color {#9a00c7}{3}}{\color {#00880a}{6}} $$ Substitute values of `a`, `b`, and `n` `=` `3/6` Simplify `h` `=` `1/2` First, construct a table of values for both `x` and `y` given the equation.`y=2^x``x` `3` `3.5` `4` `4.5` `5` `5.5` `6` `y` Substitute `x=3` into the given equation.`y` `=` $$\frac {6}{\color{#9932CC}{3}}$$ Substitute the value of `x` `=` `2` Simplify `y_0` `=` `2` `x` `3` `3.5` `4` `4.5` `5` `5.5` `6` `y` `2` Substitute `x=3.5` into the given equation.`y` `=` $$\frac{6}{\color{#9932CC}{3.5}}$$ Substitute the value of `x` `y_1` `=` `6/3.5` Simplify `x` `3` `3.5` `4` `4.5` `5` `5.5` `6` `y` `2` `6/3.5` Repeat this process for each `\text(x-value)``x` `3` `3.5` `4` `4.5` `5` `5.5` `6` `y` `2` `6/3.5` `6/4` `6/4.5` `6/5` `6/5.5` `1` Apply Simpsons Rule`A` `≈` $$\int_{\color {#9a00c7}{a}}^{\color{#007ddc}{b}} f(x) dx$$ `≈` `h/3 [``y_0``+``y_L``+2(``y_2``+``y_4``+…)+4(``y_1``+``y_3``+…)]` Simpsons Rule formula `≈` `(1/2)/3 [``2``+``1``+2(``6/4``+``6/5``)+4(``6/3.5``+``6/4.5``+``6/5.5``)]` Substitute known values `≈` `1/6 [3+2(27/10)+4(4.1385)]` Simplify `≈` `1/6 [3+54/10+16.554113]` `≈` `1/6 (24.954113)` `≈` `4.159` `4.159` -
Question 4 of 7
4. Question
Find and estimate the area of the orange parcel of land.- `\text(Area) =` (1960) `m^2`
Hint
Help VideoCorrect
Fantastic!
Incorrect
Simpsons Rule
`int_a^b f(x) dx ≈ h/3 [y_0+y_L+2(y_2+y_4+…)+4(y_1+y_3+…)]`First, find the value of `h` from the given illustration.`h` `=` `20` `m` Next, identify the values for substitution into Simpsons Rule.`y_0` `y_1` `y_2` `y_3` `y_L` `21.5` `24` `22.5` `28` `19.5` Apply Simpsons Rule`A` `≈` `h/3 [``y_0``+``y_L``+2(``y_2``+``y_4``+…)+4(``y_1``+``y_3``+…)]` Simpsons Rule formula `≈` `(20)/3 [``21.5``+``19.5``+2(``22.5``)+4(``24``+``28``)]` Substitute known values `≈` `20/3 [41+45+208]` Simplify `≈` `20/3 [294]` `≈` `1960` `1960` `m^2` -
Question 5 of 7
5. Question
Find and estimate the area of the huge block of land.- `\text(Area) =` (251333 1/3, 251333.33, 251333.3333) `m^2`
Hint
Help VideoCorrect
Excellent!
Incorrect
Simpsons Rule
`int_a^b f(x) dx ≈ h/3 [y_0+y_L+2(y_2+y_4+…)+4(y_1+y_3+…)]`First, find the value of `h` from the given illustration.`h` `=` `200` `m` Next, identify the values for substitution into Simpsons Rule.`y_0` `y_1` `y_2` `y_3` `y_4` `y_5` `y_L` `0` `150` `290` `320` `210` `180` `170` Apply Simpsons Rule`A` `≈` `h/3 [``y_0``+``y_L``+2(``y_2``+``y_4``+…)+4(``y_1``+``y_3``+…)]` Simpsons Rule formula `≈` `(200)/3 [``0``+``170``+2(``290``+``210``)+4(``150``+``320``+``180``)]` Substitute known values `≈` `200/3 [170+1000+4(2600)]` Simplify `≈` `200/3 [3770]` `≈` `251333 1/3` `251333 1/3` `m^2` -
Question 6 of 7
6. Question
Find and estimate the area of the yellow parcel of land.- `\text(Area) =` (45000) `m^2`
Hint
Help VideoCorrect
Nice Job!
Incorrect
Simpsons Rule
`int_a^b f(x) dx ≈ h/3 [y_0+y_L+2(y_2+y_4+…)+4(y_1+y_3+…)]`First, find the value of `h` from the given illustration.`h` `=` `400/4` `h` `=` `100` `m` Next, identify the values for substitution into Simpsons Rule.`y_0` `y_1` `y_2` `y_3` `y_L` `110` `98` `102` `124` `148` Apply Simpsons Rule`A` `≈` `h/3 [``y_0``+``y_L``+2(``y_2``+``y_4``+…)+4(``y_1``+``y_3``+…)]` Simpsons Rule formula `≈` `(100)/3 [``110``+``148``+2(``102``)+4(``98``+``124``)]` Substitute known values `≈` `100/3 [258+204+888]` Simplify `≈` `100/3 [1350]` `≈` `45000` `45000` `m^2` -
Question 7 of 7
7. Question
Find and estimate the area of the irregular piece of land.- `\text(Area) =` (5558 2/3) `m^2`
Hint
Help VideoCorrect
Well Done!
Incorrect
Simpsons Rule
`int_a^b f(x) dx ≈ h/3 [d_f+4d_m+d_L]`First, find the value of `h` from the given illustration.`h` `=` `22` `m` Next, identify the values for substitution into Simpsons Rule.`d_f` `d_m` `d_L` `0` `49` `68` `d_f` `d_m` `d_L` `68` `88` `74` Apply Simpsons Rule to find `A_1``A_1` `≈` `h/3 [d_f+4d_m+d_L]` Simpsons Rule formula `≈` `(22)/3 [``0``+4(``49``)+``68``]` Substitute known values `≈` `22/3 [68+196]` Simplify `≈` `22/3 [264]` `A_1` `≈` `1936` `m^2` Apply Simpsons Rule to find `A_2``A_2` `≈` `h/3 [d_f+4d_m+d_L]` Simpsons Rule formula `≈` `(22)/3 [``68``+4(``88``)+``74``]` Substitute known values `≈` `22/3 [142+352]` Simplify `≈` `22/3 [494]` `A_2` `≈` `3622 2/3` `m^2` Add `A_1` and `A_2``A` `≈` `A_1``+``A_2` Combine the areas `≈` `1936``+``3622 2/3` `≈` `5558 2/3` `5558 2/3` `m^2`
Quizzes
- Indefinite Integrals 1
- Indefinite Integrals 2
- Indefinite Integrals 3
- Definite Integrals
- Areas Between Curves and the Axis 1
- Areas Between Curves and the Axis 2
- The Area Between Curves
- Volumes of Revolution 1
- Volumes of Revolution 2
- Volumes of Revolution 3
- Trapezoidal Rule
- Simpsons Rule
- Integral of a Trigonometric Function 1
- Integral of a Trigonometric Function 2
- Applications of Integration for Trig Functions