Independent Events 1
Try VividMath Premium to unlock full access
Time limit: 0
Quiz summary
0 of 5 questions completed
Questions:
- 1
- 2
- 3
- 4
- 5
Information
–
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading...
You must sign in or sign up to start the quiz.
You have to finish following quiz, to start this quiz:
Loading...
- 1
- 2
- 3
- 4
- 5
- Answered
- Review
-
Question 1 of 5
1. Question
A multi-stage event includes three stages: spinning a spinner, tossing a coin, and rolling a dice. Find the probability of getting Yellow, Heads and the side `4`Write fractions in the format “a/b”- (1/36)
Hint
Help VideoCorrect
Great Work!
Incorrect
Probability Formula
$$\mathsf{P(E)}=\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$Product Rule
$$\mathsf{P(A\:and\:B)}=\mathsf{P(A)}\times\mathsf{P(B)}$$Find the probability of the arrow landing on Yellow when spinning the spinnerfavourable outcomes`=``1` (`1` Yellow section)total outcomes`=``3` (`3` total sections)$$ \mathsf{P(Yellow)} $$ `=` $$\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$ Probability Formula `=` $$\frac{\color{#e65021}{1}}{\color{#007DDC}{3}}$$ Substitute values Find the probability of tossing a coin and getting Headsfavourable outcomes`=``1` (a coin has `1` Heads side)total outcomes`=``2` (a coin has `2` sides)$$ \mathsf{P(Heads)} $$ `=` $$\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$ Probability Formula `=` $$\frac{\color{#e65021}{1}}{\color{#007DDC}{2}}$$ Substitute values Find the probability of rolling a dice and getting `4`favourable outcomes`=``1` (a dice has `1` side with `4`)total outcomes`=``6` (a dice has `6` sides)$$\mathsf{P(4)}$$ `=` $$\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$ Probability Formula `=` $$\frac{\color{#e65021}{1}}{\color{#007DDC}{6}}$$ Substitute values Now, substitute the probabilities into the product rule$$\mathsf{P(Yellow)}$$ `=` $$\frac{1}{3}$$ $$\mathsf{P(Heads)}$$ `=` $$\frac{1}{2}$$ $$\mathsf{P(4)}$$ `=` $$\frac{1}{6}$$ $$\mathsf{P(Yellow\:and\:Head\:and\:4)}$$ `=` $$\mathsf{P(Yellow)}\times\mathsf{P(Heads)}\times\mathsf{P(4)}$$ Product Rule `=` $$\frac{1}{3}\times\frac{1}{2}\times\frac{1}{6}$$ Substitute values `=` $$\frac{1}{36}$$ `1/36` -
Question 2 of 5
2. Question
Two spinners are spun one after the other. Find the probability of getting the following outcomes from the `1`st and `2`nd spins respectively:`(a)` Yellow and Green`(b)` Blue and OrangeWrite fractions in the format “a/b”-
`(a)` (1/18)`(b)` (1/9, 2/18)
Hint
Help VideoCorrect
Nice Job!
Incorrect
Probability Formula
$$\mathsf{P(E)}=\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$`(a)` Find the probability of the arrow landing on Yellow and Green.Find the probability of the arrow landing on Yellowfavourable outcomes`=``1` (`1` Yellow section)total outcomes`=``3` (`3` total sections)$$ \mathsf{P(Yellow)} $$ `=` $$\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$ Probability Formula `=` $$\frac{\color{#e65021}{1}}{\color{#007DDC}{3}}$$ Substitute values Find the probability of the arrow landing on Greenfavourable outcomes`=``1` (`1` Green section)total outcomes`=``6` (`6` total sections)$$ \mathsf{P(Green)} $$ `=` $$\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$ Probability Formula `=` $$\frac{\color{#e65021}{1}}{\color{#007DDC}{6}}$$ Substitute values Now, substitute the probabilities into the product rule$$\mathsf{P(Yellow)}$$ `=` $$\frac{1}{3}$$ $$\mathsf{P(Green)}$$ `=` $$\frac{1}{6}$$ $$\mathsf{P(Yellow\:and\:Green)}$$ `=` $$\mathsf{P(Yellow)}\times\mathsf{P(Green)}$$ Product Rule `=` $$\frac{1}{3}\times\frac{1}{6}$$ Substitute values `=` $$\frac{1}{18}$$ Therefore, the probability of the arrow landing on Yellow and Green is `1/18`.`(b)` Find the probability of the arrow landing on Blue and Orange.Find the probability of the arrow landing on Bluefavourable outcomes`=``1` (`1` Blue section)total outcomes`=``3` (`3` total sections)$$ \mathsf{P(Blue)} $$ `=` $$\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$ Probability Formula `=` $$\frac{\color{#e65021}{1}}{\color{#007DDC}{3}}$$ Substitute values Find the probability of the arrow landing on Orangefavourable outcomes`=``2` (`2` Orange sections)total outcomes`=``6` (`6` total sections)$$ \mathsf{P(any\:color)} $$ `=` $$\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$ Probability Formula `=` $$\frac{\color{#e65021}{2}}{\color{#007DDC}{6}}$$ Substitute values `=` $$\frac{1}{3}$$ Now, substitute the probabilities into the product rule$$\mathsf{P(Blue)}$$ `=` $$\frac{1}{3}$$ $$\mathsf{P(Orange)}$$ `=` $$\frac{1}{3}$$ $$\mathsf{P(Blue\:and\:Orange)}$$ `=` $$\mathsf{P(Blue)}\times\mathsf{P(Orange)}$$ Product Rule `=` $$\frac{1}{3}\times\frac{1}{3}$$ Substitute values `=` $$\frac{1}{9}$$ Therefore, the probability of the arrow landing on Blue and Orange is `1/9`.`(a) 1/18``(b) 1/9` -
-
Question 3 of 5
3. Question
A coin is weighted in such a way that Tails would show up twice the chance of Heads. Find the probability of tossing this coin thrice and getting:`(a) 3` Tails`(b)` Tails, Heads, TailsWrite fractions in the format “a/b”-
`(a)` (8/27)`(b)` (4/27)
Hint
Help VideoCorrect
Fantastic!
Incorrect
Probability Formula
$$\mathsf{P(E)}=\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$`(a)` Find the probability of getting `3` Tails.Find the probability of getting Tails. Remember that Tails has twice the chance as Headsfavourable outcomes`=``2` (T,T)total outcomes`=``3` (H,T,T)$$ \mathsf{P(Tails)} $$ `=` $$\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$ Probability Formula `=` $$\frac{\color{#e65021}{2}}{\color{#007DDC}{3}}$$ Substitute values Now, substitute this probability into the product rule$$\mathsf{P(3\:Tails)}$$ `=` $$\mathsf{P(Tails)}\times\mathsf{P(Tails)}\times\mathsf{P(Tails)}$$ Product Rule `=` $$\frac{2}{3}\times\frac{2}{3}\times\frac{2}{3}$$ Substitute values `=` $$\frac{8}{27}$$ Therefore, the probability of getting `3` Tails is `8/27`.`(b)` Find the probability of getting Tails, Heads, Tails.From part `(a)`, we have solved for the probability of getting Tails$$ \mathsf{P(Tails)} $$ `=` $$\frac{2}{3}$$ Find the probability of getting Heads. Remember that Tails has twice the chance as Headsfavourable outcomes`=``1` (H)total outcomes`=``3` (H,T,T)$$ \mathsf{P(Heads)} $$ `=` $$\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$ Probability Formula `=` $$\frac{\color{#e65021}{1}}{\color{#007DDC}{3}}$$ Substitute values Now, substitute the solved probabilities into the product rule$$\mathsf{P(Tails)}$$ `=` $$\frac{2}{3}$$ $$\mathsf{P(Heads)}$$ `=` $$\frac{1}{3}$$ $$\mathsf{P(Tails,\:Heads,\:Tails)}$$ `=` $$\mathsf{P(Tails)}\times\mathsf{P(Heads)}\times\mathsf{P(Tails)}$$ Product Rule `=` $$\frac{2}{3}\times\frac{1}{3}\times\frac{2}{3}$$ Substitute values `=` $$\frac{4}{27}$$ Therefore, the probability of getting Tails, Heads, Tails is `4/27`.`(a) 8/27``(b) 4/27` -
-
Question 4 of 5
4. Question
One box contains cards labelled `1` to `5` and another box contains cards labelled `A` to `E`. If you draw a card from each box, find the probability of drawing:`(a)` A `2` or `4`, then an `A``(b)` An Even Number and a VowelWrite fractions in the format “a/b”-
`(a)` (2/25)`(b)` (4/25)
Hint
Help VideoCorrect
Correct!
Incorrect
Probability Formula
$$\mathsf{P(E)}=\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$Addition Rule
$$\mathsf{P(A\:or\:B)}=\mathsf{P(A)}+\mathsf{P(B)}$$Product Rule
$$\mathsf{P(A\:and\:B)}=\mathsf{P(A)}\times\mathsf{P(B)}$$`(a)` Find the probability of getting a `2` or `4` then an `A`.Find the probability of getting `2` or `4`.favourable outcomes`=``2` (2,4)total outcomes`=``5` (5 number cards)$$ \mathsf{P(2\:or\:4)} $$ `=` $$\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$ Probability Formula `=` $$\frac{\color{#e65021}{2}}{\color{#007DDC}{5}}$$ Substitute values Find the probability of getting `A`.favourable outcomes`=``1` (A)total outcomes`=``5` (5 letter cards)$$ \mathsf{P(A)} $$ `=` $$\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$ Probability Formula `=` $$\frac{\color{#e65021}{1}}{\color{#007DDC}{5}}$$ Substitute values Now, substitute this probability into the product rule$$\mathsf{P(3\:Tails)}$$ `=` $$\mathsf{P(2\:or\:4)}\times\mathsf{P(A)}$$ Product Rule `=` $$\frac{2}{5}\times\frac{1}{5}$$ Substitute values `=` $$\frac{2}{25}$$ Therefore, the probability of getting a `2` or a `4` then an `A` is `2/25`.`(b)` Find the probability of getting an Even Number and a Vowel.Find the probability of getting an Even Number, `2` or `4`.favourable outcomes`=``2` (2,4)total outcomes`=``5` (5 number cards)$$ \mathsf{P(Even\:Number)} $$ `=` $$\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$ Probability Formula `=` $$\frac{\color{#e65021}{2}}{\color{#007DDC}{5}}$$ Substitute values Find the probability of getting a Vowel, `A` or `E`.favourable outcomes`=``2` (A,E)total outcomes`=``5` (5 letter cards)$$ \mathsf{P(Vowel)} $$ `=` $$\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$ Probability Formula `=` $$\frac{\color{#e65021}{2}}{\color{#007DDC}{5}}$$ Substitute values Now, substitute this probability into the product rule$$\mathsf{P(3\:Tails)}$$ `=` $$\mathsf{P(Even\:Number)}\times\mathsf{P(Vowel)}$$ Product Rule `=` $$\frac{2}{5}\times\frac{2}{5}$$ Substitute values `=` $$\frac{4}{25}$$ Therefore, the probability of getting an Even Number and a Vowel is `4/25`.`(a) 2/25``(b) 4/25` -
-
Question 5 of 5
5. Question
Find the probability of rolling two dice and getting double numbers and a sum of at least `9`Write fractions in the format “a/b”- (5/108, 10/216)
Hint
Help VideoCorrect
Great Work!
Incorrect
Probability Formula
$$\mathsf{P(E)}=\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$Product Rule
$$\mathsf{P(A\:and\:B)}=\mathsf{P(A)}\times\mathsf{P(B)}$$First, set up a lattice showing all possible sums for the two diceThis means there are `36` possible outcomesNext, find the probability of getting a double numberfavourable outcomes`=``6` (a dice has `6` numbers hence `6` possible double numbers)total outcomes`=``36`$$ \mathsf{P(double)} $$ `=` $$\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$ Probability Formula `=` $$\frac{\color{#e65021}{6}}{\color{#007DDC}{36}}$$ Substitute values `=` $$\frac{1}{6}$$ Find the probability of getting a sum of at least `9`favourable outcomes`=``10`(`10` dots on lattice above)total outcomes`=``36`$$ \mathsf{P(sum}≤9) $$ `=` $$\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$ Probability Formula `=` $$\frac{\color{#e65021}{10}}{\color{#007DDC}{36}}$$ Substitute values `=` $$\frac{5}{18}$$ Finally, multiply the two probabilities$$\mathsf{P(double)}$$ `=` $$\frac{1}{6}$$ $$\mathsf{P(sum}≤9)$$ `=` $$\frac{5}{8}$$ $$\mathsf{P(double\:and\:sum}≤9)$$ `=` $$\mathsf{P(double)}\times\mathsf{P(sum}≤9)$$ Product Rule `=` $$\frac{1}{6}\times\frac{5}{18}$$ Substitute values `=` $$\frac{5}{108}$$ `5/108`
Quizzes
- Simple Probability (Theoretical) 1
- Simple Probability (Theoretical) 2
- Simple Probability (Theoretical) 3
- Simple Probability (Theoretical) 4
- Complementary Probability
- Compound Events (Addition Rule) 1
- Compound Events (Addition Rule) 2
- Venn Diagrams (Mutually Inclusive)
- Independent Events 1
- Independent Events 2
- Dependent Events (Conditional Probability)
- Probability Tree (Independent Events) 1
- Probability Tree (Independent Events) 2
- Probability Tree (Dependent Events)